100+ datasets found
  1. d

    CustomWeather Rainfall API: Rainfall Forecast and Historical Weather Data...

    • datarade.ai
    .json, .xml, .csv
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CustomWeather (2023). CustomWeather Rainfall API: Rainfall Forecast and Historical Weather Data with Global Coverage [Dataset]. https://datarade.ai/data-products/customweather-rainfall-api-rainfall-forecast-and-historical-customweather
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset authored and provided by
    CustomWeather
    Area covered
    South Georgia and the South Sandwich Islands, Qatar, Holy See, Tokelau, Brunei Darussalam, Fiji, Kuwait, Iran (Islamic Republic of), Ecuador, Lebanon
    Description

    The backbone of CustomWeather's forecasting arm is our proven, high-resolution model, the CW100. The CW100 Model is based on physics, not statistics or airport observations. As a result, it can achieve significantly better accuracy than statistical models, especially for non-airport locations. While other forecast models are designed to forecast the entire atmosphere, the CW100 greatly reduces computational requirements by focusing entirely on conditions near the ground. This reduction of computations allows it to resolve additional physical processes near the ground that are not resolved by other models. It also allows the CW100 to operate at a much higher resolution, typically 100x finer than standard models and other gridded forecasts.

    Detailed Forecasts:
    Features a detailed 48-hour outlook broken into four segments per day: morning, afternoon, evening, and overnight. Each segment provides condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, 6-hr forecasted precip amounts, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Extended Forecasts Days 1-15:
    Features condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Hour-by-Hour Forecasts: Features Hour-by-Hour forecasts. The product is available as 12 hour, 48 hour and 168 hour blocks. Each hourly forecast includes weather descriptions, wind conditions, temperature, dew point, humidity, visibility, rainfall totals, snowfall totals, and precipitation probability. Available for over 85,000 forecast points globally. Updated four times per day.

    Historical Longer Term Forecasts: Includes historical hourly and/or daily forecast data from 2009 until present date. Data will include condition descriptions, high/low temperatures, wind speed and direction, dew point, humidity, comfort level, UV index, probability of precipitation, rainfall and snowfall amounts. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Below are available time periods per each type of forecast from the GFS model and from CustomWeather's proprietary CW100 model:

    GFS: 7-day hourly forecasts from August 2nd 2009; 48-hour to 5-day detailed forecasts from August 4th 2009; 15-day forecasts from October 9th 2008.

    CW100: 7-day hourly forecasts from November 27, 2012; 48-hour detailed forecasts from November 12, 2011; 7-day forecasts from December 6, 2010, 15-day forecasts from August 6, 2012. CW100 is CustomWeather's proprietary model.

    MOS: (Model Output Statistics) for any global location using archive of model and observation data. 0.25 degree resolution. 15-day hourly forecasts from January 1, 2017; 15-day forecasts from April 19, 2017.

  2. National Weather Service Wind Forecast

    • hub.arcgis.com
    • geodata.colorado.gov
    • +4more
    Updated Jun 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). National Weather Service Wind Forecast [Dataset]. https://hub.arcgis.com/maps/33820e818ebc4661b01bcd47e5f2a57e
    Explore at:
    Dataset updated
    Jun 7, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map displays the wind forecast over the next 72 hours across the contiguous United States, in 3 hour increments, including wind direction, wind gust, and sustained wind speed.Zoom in on the Map to refine the detail for a desired area. The Wind Gust is the maximum 3-second wind speed (in mph) forecast to occur within a 2-minute interval within a 3 hour period at a height of 10 meters Above Ground Level (AGL). The Wind Speed is the expected sustained wind speed (in mph) for the indicated 3 hour period at a height of 10 meters AGL. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Wind Speed Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wspd.binWind Gust Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wgust.binWind Direction Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wdir.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.Alternate SymbologyFeature Layer item that uses Vector Marker Symbols to render point arrows, easily altered by user. The color palette uses the Beaufort Scale for Wind Speed. https://www.arcgis.com/home/item.html?id=45cd2d4f5b9a4f299182c518ffa15977 This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  3. Meteorological Service of Canada (MSC) Beaufort Wind and Wave Reanalysis

    • open.canada.ca
    • datasets.ai
    • +3more
    docx, html, pdf, zip
    Updated Jul 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2021). Meteorological Service of Canada (MSC) Beaufort Wind and Wave Reanalysis [Dataset]. https://open.canada.ca/data/en/dataset/26bd6b89-0b85-4697-8d51-fc84e9f4b549
    Explore at:
    docx, pdf, zip, htmlAvailable download formats
    Dataset updated
    Jul 30, 2021
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This dataset contains 21 statistics of wind and waves calculated from hourly reanalysis data of historical surface winds and ocean surface waves for the Canadian Beaufort Sea for the period 1970-2015 (each statistic has an annual and 12 monthly values). These data can be used for characterization of marine surface wind and wave climate conditions, trends and variability for Canadian Arctic waters, for use of coastal and offshore operations/risk management (e.g., shipping). The hourly wind and waves data may be obtained upon request from the Meteorological Service of Canada's Climate Services.

  4. d

    CustomWeather - High-Resolution Weather Forecasts and Historical Weather...

    • datarade.ai
    .xml, .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CustomWeather (2025). CustomWeather - High-Resolution Weather Forecasts and Historical Weather Forecasts [Dataset]. https://datarade.ai/data-products/high-resolution-weather-forecasts-and-historical-weather-forecasts-customweather
    Explore at:
    .xml, .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    CustomWeather
    Area covered
    Niger, Chad, Tanzania, Western Sahara, Peru, Saint Kitts and Nevis, Cuba, British Indian Ocean Territory, Botswana, Zambia
    Description

    The backbone of CustomWeather's forecasting arm is our proven, high-resolution model, the CW100. The CW100 Model is based on physics, not statistics or airport observations. As a result, it can achieve significantly better accuracy than statistical models, especially for non-airport locations. While other forecast models are designed to forecast the entire atmosphere, the CW100 greatly reduces computational requirements by focusing entirely on conditions near the ground. This reduction of computations allows it to resolve additional physical processes near the ground that are not resolved by other models. It also allows the CW100 to operate at a much higher resolution, typically 100x finer than standard models and other gridded forecasts.

    Detailed Forecasts:
    Features a detailed 48-hour outlook broken into four segments per day: morning, afternoon, evening, and overnight. Each segment provides condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, 6-hr forecasted precip amounts, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Extended Forecasts Days 1-15:
    Features condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Hour-by-Hour Forecasts: Features Hour-by-Hour forecasts. The product is available as 12 hour, 48 hour and 168 hour blocks. Each hourly forecast includes weather descriptions, wind conditions, temperature, dew point, humidity, visibility, rainfall totals, snowfall totals, and precipitation probability. Available for over 85,000 forecast points globally. Updated four times per day.

    Historical Longer Term Forecasts: Includes historical hourly and/or daily forecast data from 2009 until present date. Data will include condition descriptions, high/low temperatures, wind speed and direction, dew point, humidity, comfort level, UV index, probability of precipitation, rainfall and snowfall amounts. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Below are available time periods per each type of forecast from the GFS model and from CustomWeather's proprietary CW100 model:

    GFS: 7-day hourly forecasts from August 2nd 2009; 48-hour to 5-day detailed forecasts from August 4th 2009; 15-day forecasts from October 9th 2008.

    CW100: 7-day hourly forecasts from November 27, 2012; 48-hour detailed forecasts from November 12, 2011; 7-day forecasts from December 6, 2010, 15-day forecasts from August 6, 2012. CW100 is CustomWeather's proprietary model.

    MOS: (Model Output Statistics) for any global location using archive of model and observation data. 0.25 degree resolution. 15-day hourly forecasts from January 1, 2017; 15-day forecasts from April 19, 2017.

  5. A

    Station ID, Air Temperature (deg F), Dew Point Temperature (deg F), Wind...

    • data.amerigeoss.org
    • amerigeo.org
    • +1more
    csv, esri rest +5
    Updated Jul 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Station ID, Air Temperature (deg F), Dew Point Temperature (deg F), Wind Gust (kt), Mean Sea-Level Pressure (mb), 3-Hour Pressure Change (mb), Visibility (mi), Sea Surface Temperature (deg F), Significant Wave Height (ft) - Scale Band 4 [Dataset]. https://data.amerigeoss.org/sr_Latn/dataset/7bc704a5-101a-4808-98dd-d5dd1397ede7
    Explore at:
    ogc wms, kml, zip, geojson, csv, html, esri restAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  6. A

    Total Cloud Cover (oktas) - Scale Band 10

    • data.amerigeoss.org
    • disasters-usnsdi.opendata.arcgis.com
    csv, esri rest +5
    Updated Jul 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). Total Cloud Cover (oktas) - Scale Band 10 [Dataset]. https://data.amerigeoss.org/ro/dataset/total-cloud-cover-oktas-scale-band-10
    Explore at:
    zip, ogc wms, kml, esri rest, html, geojson, csvAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  7. Wind Velocity (knots) - Scale Band 3

    • disaster-amerigeoss.opendata.arcgis.com
    • data.amerigeoss.org
    Updated Oct 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2015). Wind Velocity (knots) - Scale Band 3 [Dataset]. https://disaster-amerigeoss.opendata.arcgis.com/maps/noaa::wind-velocity-knots-scale-band-3
    Explore at:
    Dataset updated
    Oct 1, 2015
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    Last Updated: January 2015

    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    Issue a returnUpdates=true request for an individual layer or for
    the service itself, which will return the current start and end times of
    available data, in epoch time format (milliseconds since 00:00 January 1,
    1970). To see an example, click on the "Return Updates" link at the bottom of
    this page under "Supported Operations". Refer to the
    ArcGIS REST API Map Service Documentation
    for more information.
    
    
      Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
      the proper layer corresponding with the target dataset. For raster
      data, this would be the "Image Footprints with Time Attributes" layer
      in the same group as the target "Image" layer being displayed. For
      vector (point, line, or polygon) data, the target layer can be queried
      directly. In either case, the attributes returned for the matching
      raster(s) or vector feature(s) will include the following:
    
    
          validtime: Valid timestamp.
    
    
          starttime: Display start time.
    
    
          endtime: Display end time.
    
    
          reftime: Reference time (sometimes reffered to as
          issuance time, cycle time, or initialization time).
    
    
          projmins: Number of minutes from reference time to valid
          time.
    
    
          desigreftime: Designated reference time; used as a
          common reference time for all items when individual reference
          times do not match.
    
    
          desigprojmins: Number of minutes from designated
          reference time to valid time.
    
    
    
    
      Query the nowCOAST LayerInfo web service, which has been created to
      provide additional information about each data layer in a service,
      including a list of all available "time stops" (i.e. "valid times"),
      individual timestamps, or the valid time of a layer's latest available
      data (i.e. "Product Time"). For more information about the LayerInfo
      web service, including examples of various types of requests, refer to
      the nowCOAST help documentation at:
      http://new.nowcoast.noaa.gov/help/#section=layerinfo
    

    References

    NWS, 2013: Sample Station Plot, NWS/NCEP/WPC, College Park, MD (Available at http://www.hpc.ncep.noaa.gov/html/stationplot.shtml). NWS, 2013: Terminology and Weather Symbols, NWS/NCEP/OPC, College Park, MD (Available at http://www.opc.ncep.noaa.gov/product_description/keyterm.shtml). NWS, 2013: How to read Surface weather maps, JetStream an Online School for Weather (Available at http://www.srh.noaa.gov/jetstream/synoptic/wxmaps.htm).

  8. a

    Historical Tropical Cyclones Hazard Data: Hurricane Georges (web map)

    • hub.arcgis.com
    Updated Oct 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kinetic Analysis Corporation (2021). Historical Tropical Cyclones Hazard Data: Hurricane Georges (web map) [Dataset]. https://hub.arcgis.com/maps/kineticanalysis::historical-tropical-cyclones-hazard-data-hurricane-georges-web-map?uiVersion=content-views
    Explore at:
    Dataset updated
    Oct 19, 2021
    Dataset authored and provided by
    Kinetic Analysis Corporation
    Area covered
    Description

    This web map includes the track points, track lines, and hazard layers for historical Hurricane Georges, AL071998.DATA OVERVIEWKinetic Analysis's Tropical Cyclone datasets use best-track data for the requested storm as is available from IBTRaCS (or, for recent storms where there is no best-track, we use ATCF a-deck data provided by the U.S. National Hurricane Center, Joint Typhoon Warning Center, or Central Pacific Hurricane Center) to drive in-house, advanced numerical modeling that computes the spatial distribution of maximum wind speedwinds by Saffir-Simpson categorieswave heightsstorm surge inundationcumulative rainfallUSE CASESWhile this data may be used in a variety of ways, the most common ways we see it in action is by insurance, emergency management, disaster relief, supply chain, and governmental agencies/organization in making decisions about actions to take before, during, and after a tropical cyclone. A collection of historical tropical cyclone data can provide information on the probability and trends that can be expected for a given location affected by tropical cyclones in the future. Claims officers, for example, can use this information to determine the vulnerability and exposure level of a given area or property. Government agencies can use impact data to determine where to focus on building climate resilience safeguards and resources next.DATA SOURCEHazard footprints are based on observed storm track, intensity and wind radii provided by the designated expert-reviewed sources U.S. NHC (National Hurricane Center), JTWC (Joint Typhoon Warning Center), CPHC (Central Pacific Hurricane Center) - collectively termed OFCL (Official). UPDATE FREQUENCYSince these are historical/past storms, as long as the storm's path was recorded and publicly available, the resulting hazards and impacts can be modeled by Kinetic Analysis at any time upon request.SCALE/RESOLUTIONThis post-event data is provided at a 30 arcsecond (~1 km) resolution. AREA COVEREDWorldINTERESTED IN MORE?Our full ArcGIS Marketplace listing grants you access to the Kinetic Analysis Corporation's proprietary tropical storm hazard data for a past/historical tropical cyclone of your choice per purchase, to be custom-generated for you upon purchase request. Different price options are available for those who wish to purchase to purchase footprints for multiple historical storms, bundle with our real-time data, or make other custom requests.Customized resolutions, best track data source, and data units (default is SI) are available upon request to sales@kinanco.com. Learn more on the Kinetic Analysis website.GLOSSARY/DATA FIELDSTrack Points - These points indicate the locations of a storm over time. They are generated by forecast agencies and numerical model guidance.Track Line - This is the line formed by connecting all the track points. It depicts a continuous path for the storm by interpolating between any two track points.ATCF ID - Unique ID associated with a tropical cyclone, defined using the Automated Tropical Cyclone Forecasting (ATCF) system. The format is usually a two-letter abbreviation of the ocean basin (see "Storm Basin" below for list) in which the storm can be found, the annual cyclone number starting from 1 for the first storm in each basin per year, and the 4-digit year. For example, AL112017 (Hurricane Irma) refers to AL (Atlantic basin), 11th storm of the year in that basin, in the year 2017.Storm Name - The World Meteorological Organization (WMO) tropical cyclone name, such as Irma, Katrina, and Rai.Storm Basin - Ocean basin in which the storm is taking place. These include AL (North Atlantic), WP (Western North Pacific), CP (Central North Pacific), EP (Eastern North Pacific), IO (North Indian Ocean), SH (South-West Indian Ocean, Australian region, and South Pacific Ocean), and LS (Southern Atlantic).Storm Age - Number of days the storm has been active at time of forecastCategory Description - How the selected layer would be categorized against similar data. For example, data in a wind layer may be categorized into groups of 5 mph each, such as 100-105 mph for one group and 105-110 mph for another group. In such a case, the category description field displays which grouping the selected location belongs to. This is a variable/field separate from the name of each map layer.Latitude & Longitude - Geographic indicators of a storm's past, current, or forecast location derived from dividing the Earth into grids measured in degrees.Wind Speed - Maximum wind speed of the storm at that location. The units are knots for track points and track line layers and miles per hour (mph) for the wind speed hazard layer. These represent terrain-adjusted, 2-minute sustained winds at 10-meter elevation and are consistent with wind speeds reported by Automated Surface Observing Stations (ASOS weather stations). They can differ from wind speed forecast by different agencies because, in contrast with winds forecast by agencies such as the NHC, Kinetic Analysis-generated winds account for the effects of surface roughness and topography. In addition, different agencies can report winds based on different averaging times. For example, the NHC and JTWC report 1-minute sustained winds while the World Meteorological Organization (WMO) standard is 10-minute sustained winds.Minimum Sea Level Pressure - The lowest sea level pressure at that storm location. Measured in millibars.Radius of Max Winds - The distance between the storm's center, where the central pressure is lowest, and the maximum winds of a storm. Measured in nautical miles. Forward Speed - How fast a storm is moving at the selected location. Measured in meters per second (m/s).Storm Direction - The direction toward which a storm is moving at the selected location. Measured with a 360-degree system where North is represented by 0 degrees and East by 90 degrees.Forecast Time - Time at which an agency (such as OFCL) released its newest update of storm track data. This is the set of data used to simulate the model results displayed. Simulation Time - Time at which Kinetic Analysis's models processed the current data.Model in Simulation - The forecast agency, or model that generated the inputs for the Kinetic Analysis-simulated storm hazard data.NOTE: This map and its data are provided for informational purposes only. Due to limitations in modern modeling technology, this data may not reflect the ultimate path, hazards, and/or impacts of a storm with 100% accuracy. Usage of this map and its data voids Kinetic Analysis of any responsibilities for consequences that may arise from using it to make personal or business decisions.

  9. e

    NOAA Weather and Marine Observations

    • national-government.esrij.com
    Updated Oct 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2018). NOAA Weather and Marine Observations [Dataset]. https://national-government.esrij.com/maps/26ad0000b1a540e9a90760032669f3e6
    Explore at:
    Dataset updated
    Oct 19, 2018
    Dataset authored and provided by
    CA Governor's Office of Emergency Services
    Area covered
    Description

    Last Revised: February 2016 Map InformationThis nowCOASTâ„¢ time-enabled map service provides maps depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is a method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in; however, all cloud cover values are presently displayed using the "Missing" symbol due to a problem with the source data. Present weather information is also not available for display at this time. Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs, which indicate wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds.Due to software limitations, the observations included in this map service are organized into three separate group layers: 1) Wind velocity (wind barb) observations, 2) Cloud Cover observations, and 3) All other observations, which are displayed as numerical values (e.g. Air Temperature, Wind Gust, Visibility, Sea Surface Temperature, etc.).Additionally, due to the density of weather/ocean observations in this map service, each of these group data layers has been split into ten individual "Scale Band" layers, with each one visible for a certain range of map scales. Thus, to ensure observations are displayed at any scale, users should make sure to always specify all ten corresponding scale band layers in every map request. This will result in the scale band most appropriate for your present zoom level being shown, resulting in a clean, uncluttered display. As you zoom in, additional observations will appear.The observations in this nowCOASTâ„¢ map service are updated approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observations for a particular station may update only once per hour. For more detailed information about layer update frequency and timing, please reference the nowCOASTâ„¢ Dataset Update Schedule.Background InformationThe maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing stations from the U.S.A. and other countries. For terrestrial networks, the platforms include but are not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Real-Time System (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until approximately 23 minutes past top of the hour for land-based stations and 33 minutes past the top of the hour for maritime stations.Time InformationThis map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:Issue a returnUpdates=true request (ArcGIS REST protocol only) for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of the REST Service page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes referred to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOASTâ„¢ LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOASTâ„¢ LayerInfo Help DocumentationReferencesNWS, 2013: Sample Station Plot, NWS/NCEP/WPC, College Park, MD (Available at http://www.wpc.ncep.noaa.gov/html/stationplot.shtml).NWS, 2013: Terminology and Weather Symbols, NWS/NCEP/OPC, College Park, MD (Available at http://www.opc.ncep.noaa.gov/product_description/keyterm.shtml).NWS, 2013: How to read Surface weather maps, JetStream an Online School for Weather (Available at http://www.srh.noaa.gov/jetstream/synoptic/wxmaps.htm).

  10. a

    Wind Velocity (knots) - Scale Band 5

    • pickawayopendata-pickaway-gis.opendata.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Oct 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2015). Wind Velocity (knots) - Scale Band 5 [Dataset]. https://pickawayopendata-pickaway-gis.opendata.arcgis.com/datasets/87c71371d7714aae82b3983f4526af39
    Explore at:
    Dataset updated
    Oct 1, 2015
    Dataset authored and provided by
    NOAA GeoPlatform
    Area covered
    Description

    Last Updated: January 2015

    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    Issue a returnUpdates=true request for an individual layer or for
    the service itself, which will return the current start and end times of
    available data, in epoch time format (milliseconds since 00:00 January 1,
    1970). To see an example, click on the "Return Updates" link at the bottom of
    this page under "Supported Operations". Refer to the
    ArcGIS REST API Map Service Documentation
    for more information.
    
    
      Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
      the proper layer corresponding with the target dataset. For raster
      data, this would be the "Image Footprints with Time Attributes" layer
      in the same group as the target "Image" layer being displayed. For
      vector (point, line, or polygon) data, the target layer can be queried
      directly. In either case, the attributes returned for the matching
      raster(s) or vector feature(s) will include the following:
    
    
          validtime: Valid timestamp.
    
    
          starttime: Display start time.
    
    
          endtime: Display end time.
    
    
          reftime: Reference time (sometimes reffered to as
          issuance time, cycle time, or initialization time).
    
    
          projmins: Number of minutes from reference time to valid
          time.
    
    
          desigreftime: Designated reference time; used as a
          common reference time for all items when individual reference
          times do not match.
    
    
          desigprojmins: Number of minutes from designated
          reference time to valid time.
    
    
    
    
      Query the nowCOAST LayerInfo web service, which has been created to
      provide additional information about each data layer in a service,
      including a list of all available "time stops" (i.e. "valid times"),
      individual timestamps, or the valid time of a layer's latest available
      data (i.e. "Product Time"). For more information about the LayerInfo
      web service, including examples of various types of requests, refer to
      the nowCOAST help documentation at:
      http://new.nowcoast.noaa.gov/help/#section=layerinfo
    

    References

    NWS, 2013: Sample Station Plot, NWS/NCEP/WPC, College Park, MD (Available at http://www.hpc.ncep.noaa.gov/html/stationplot.shtml). NWS, 2013: Terminology and Weather Symbols, NWS/NCEP/OPC, College Park, MD (Available at http://www.opc.ncep.noaa.gov/product_description/keyterm.shtml). NWS, 2013: How to read Surface weather maps, JetStream an Online School for Weather (Available at http://www.srh.noaa.gov/jetstream/synoptic/wxmaps.htm).

  11. a

    Wind Speed 50m

    • indianamapold-inmap.hub.arcgis.com
    • indianamap.org
    • +2more
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2023). Wind Speed 50m [Dataset]. https://indianamapold-inmap.hub.arcgis.com/maps/a30ed5e109b44a029ede271e3495490a
    Explore at:
    Dataset updated
    Jun 12, 2023
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    The following is excerpted from an unpublished report by Michael Brower (2004): "Using the MesoMap system, TrueWind has produced maps of mean wind speed in Indiana for heights of 30, 50, 70, and 100 m above ground, as well as a map of wind power at 50 m. TrueWind has also produced data files of the predicted wind speed frequency distribution and speed and energy by direction. The maps and data files are provided on a CD with the ArcReader software, which will enable users to view, print, copy, and query the maps and wind rose data. "The MesoMap system consists of an integrated set of atmospheric simulation models, databases, and computers and storage systems. At the core of MesoMap is MASS (Mesoscale Atmospheric Simulation System), a numerical weather model, which simulates the physics of the atmosphere. MASS is coupled to a simpler wind flow model, WindMap, which is used to refine the spatial resolution of MASS and account for localized effects of terrain and surface roughness. MASS simulates weather conditions over a region for 366 historical days randomly selected from a 15-year period. When the runs are finished, the results are input into WindMap. In this project, the MASS model was run on a grid spacing of 1.7 km and WindMap on a grid spacing of 200 m. "The wind maps show that the best wind resource in Indiana is found in the northcentral part of the state. The mean wind speed at 50 m height between Indianapolis, Kokomo, and Lafayette, and to the northwest of Lafayette, is predicted to be in the range of 6.5 to 7 m/s, and the mean wind power is predicted to be about 250 to 350 W/m2, or NREL class 2 to 3. In the rest of northern Indiana, the wind speed tends to be around 0.5 m/s lower, and the wind power is a solid class 2. In southern Indiana, a wind speed of 4.5 to 6 m/s and a wind power class of 1 to 2 prevails. The main reason for this wind resource distribution pattern is that the land is much more forested in the southern half of the state than in the northern half. Topography also plays a role, as does the track of the jet stream."

  12. d

    Nearshore waves in southern California: hindcast, and modeled historical and...

    • search.dataone.org
    • data.usgs.gov
    • +2more
    Updated Sep 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christie Hegermiller; Li Erikson; Patrick Barnard (2017). Nearshore waves in southern California: hindcast, and modeled historical and 21st-century projected time series [Dataset]. https://search.dataone.org/view/53e7d658-fcac-4b3e-b214-afa6b8af3456
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    USGS Science Data Catalog
    Authors
    Christie Hegermiller; Li Erikson; Patrick Barnard
    Time period covered
    Jun 1, 2015 - Aug 30, 2016
    Area covered
    Variables measured
    Nearshore wave parameters for validated hindcast, GCM historical, and GCM 21st-century time periods
    Description

    Abstract: This data release presents modeled time series of nearshore waves along the southern California coast, from Point Conception to the Mexican border, hindcasted for 1980-2010 and projected using global climate model forcing for 1975-2005 and 2012-2100. Details: As part of the Coastal Storm Modeling System (CoSMoS), time series of hindcast, historical, and 21st-century nearshore wave parameters (wave height, period, and direction) were simulated for the southern California coast from Point Conception to the Mexican border. Changes in deep-water wave conditions directly regulate the energy driving coastal processes. However, a number of physical processes, for example, refraction on continental shelves and/or diffraction by islands, transform deep-water waves as they propagate to the nearshore, which complicates large-scale modeling efforts. In this work, a hindcast of nearshore waves was simulated by forcing a numerical wave model with hindcasted intermediate-water waves and reanalysis winds. A lookup table was created by relating corresponding offshore winds and waves with nearshore wave conditions. Using the lookup table, historical and 21st-century nearshore-wave time series were generated for global climate model-forced offshore winds and waves. Three-hourly wave parameters from the U.S. Army Corps of Engineers Wave Information Studies (WIS; http://wis.usace.army.mil/) and near-surface winds (10 m above ground) from the California Reanalysis Downscaling at 10 km (CaRD10; Kanamitsu and Kanamaru, 2007) were used to force the Simulating Waves Nearshore (SWAN) numerical model in stationary mode over a curvilinear grid extending along the coast from Point Conception to the Mexican border and from the shoreline to approximately 25 km offshore to hindcast the time period 1980-2010. The offshore extent of the model domain was defined by the locations of WIS stations used for forcing. Horizontal-grid resolution varies largely depending on bathymetry and shoreline curvature, ranging from 24 to 543 m in the along- and across-shore directions. Bathymetry data are from the 2013 Coastal California TopoBathy Merge Project (National Oceanic and Atmospheric Administration, 2013). Wave spectra were computed with a JONSWAP shape, 10-degree directional resolution, and 34 frequency bands ranging logarithmically from 0.0418 to 1 Hz. Three-hourly nearshore wave parameters (significant wave height [Hs], mean wave period [Tm], peak wave period [Tp], mean wave direction [Dm], and peak wave direction [Dp]) were output from the simulations at the 10-m bathymetric contour approximately every 100 m in the alongshore direction at a total of 4,802 locations in the nearshore and at an additional 23 locations coincident with California Data Information Program (CDIP; Scripps Institute of Oceanography; http://cdip.ucsd.edu) wave buoys. A lookup table was generated by relating offshore wind and deep-water wave conditions at a single offshore point and nearshore wave conditions simulated by the wave hindcast. The open boundary of the SWAN simulation does not represent deep-water wave conditions, as it is located in intermediate water and shoreward of the Channel Islands. Therefore, the NOAA WW3 Climate Forecast System Reanalysis Reforecast (CFSRR; Chawla and others, 2012) wave time series at a single point (CDIP buoy 067, equivalent to National Data Buoy Center station 46219) defined the deep-water end member. The lookup table was based on binning CFSRR deep-water wave parameters (Hs, Tp, Dp) and CaRD10 wind speed (U) at CDIP 067. Significant wave height was binned from 0.5 to 10.25 m at 0.25-m intervals; peak wave period was binned from 3 to 24 s at 3-s intervals; peak wave direction was binned from 5 to 360 degrees at 5-degree intervals; and wind speed was binned from 0 to 24 m/s at 6-m/s intervals. Interval sizes for Hs and Tp were based on the average RMSE for each variable. For each combination of deep-water Hs, Tp, Dp, and U, time indices falling into each bin were identified. For each nearshore location, median Hs, Tp, Tm, Dp, and Dm corresponding to all time indices of a given set of deep-water binned conditions were computed to complete the lookup table. Because swell travel time from offshore to nearshore is on the order of 1.5 h (assuming an average depth of 100 m and Tp of 15 s over a distance of about 120 km) and the model outputs are at three-hourly intervals, we assume no time lag between deep water and nearshore conditions. Historical (1976-2005) and 21st-century (2012-2100) deep-water wave time series at CDIP 067 were derived from the WaveWatch3 wave model over global (1.25 deg x 1.25 deg) and nested eastern North Pacific regional (0.25 deg x 0.25 deg) grids forced by three-hourly near-surface wind fields from a global climate model (GCM; GFDL-ESM2M RCP 4.5). Wind (CaRD10 and GFDL-ESM2M at CDIP 067) ... Visit https://dataone.org/datasets/53e7d658-fcac-4b3e-b214-afa6b8af3456 for complete metadata about this dataset.

  13. Wind Velocity (knots) - Scale Band 10

    • data.amerigeoss.org
    • gis-fema.hub.arcgis.com
    Updated Jul 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2017). Wind Velocity (knots) - Scale Band 10 [Dataset]. https://data.amerigeoss.org/dataset/wind-velocity-knots-scale-band-103
    Explore at:
    html, arcgis geoservices rest api, geojson, csv, kml, zipAvailable download formats
    Dataset updated
    Jul 5, 2017
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description
    Last Updated: January 2015
    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information

    The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    1. Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
    2. Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:
      • validtime: Valid timestamp.
      • starttime: Display start time.
      • endtime: Display end time.
      • reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).
      • projmins: Number of minutes from reference time to valid time.
      • desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.
      • desigprojmins: Number of minutes from designated reference time to valid time.
    3. Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfo
    References
  14. O

    Offshore Wind Roses

    • opendata.maryland.gov
    • catalog.data.gov
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Offshore Wind Roses [Dataset]. https://opendata.maryland.gov/d/bse7-ssxm
    Explore at:
    kml, csv, application/rdfxml, application/rssxml, xml, tsv, kmz, application/geo+jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    Description

    The purpose of creating this file was to use MesoMap to create high-resolution wind maps of the state and to provide wind resource data in a format enabling the assessment of potential wind development sites in a GIS. By combining a sophisticated numerical weather model capable of simulating large-scale wind patterns with a microscale wind flow model responsive to local terrain and surface conditions, they enable the mapping of wind resources with much greater accuracy than has been possible in the past. In addition, they do not require surface wind data to make accurate predictions. While on-site measurements will be required to confirm the predicted wind resource at any particular location, mesoscale-microscale modeling can greatly reduce the time and cost required to identify and evaluate potential wind project sites. This map was created by AWS Truepower, LLC using the MesoMap system and historical weather data. Although it is believed to represent an accurate overall picture of the wind energy resource, estimates at any location should be confirmed by measurement.

  15. Near-Real-Time Surface In-Situ Observations

    • eo-for-disaster-management-amerigeoss.hub.arcgis.com
    • data.amerigeoss.org
    Updated Oct 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2015). Near-Real-Time Surface In-Situ Observations [Dataset]. https://eo-for-disaster-management-amerigeoss.hub.arcgis.com/datasets/noaa::wind-velocity-knots-scale-band-5
    Explore at:
    Dataset updated
    Oct 1, 2015
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    Last Updated: January 2015

    Map Information

    This nowCOAST time-enabled map service provides map depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in. (Cloud cover is not presently displayed due to a problem with the source data. Present weather information is also not available for display at this time.) Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs. The barb indicates the wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds. The map of observations are updated in the nowCOAST map service approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observation at a particular station may have not updated and may not update until after the next hour. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information The maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing from the U.S.A. and other countries. For terrestrial networks, the platforms including but not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For over maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Observing Network (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until 22 minutes past top of the hour for land-based stations and 32 minutes past the top of the hour for maritime stations.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    Issue a returnUpdates=true request for an individual layer or for
    the service itself, which will return the current start and end times of
    available data, in epoch time format (milliseconds since 00:00 January 1,
    1970). To see an example, click on the "Return Updates" link at the bottom of
    this page under "Supported Operations". Refer to the
    ArcGIS REST API Map Service Documentation
    for more information.
    
    
      Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
      the proper layer corresponding with the target dataset. For raster
      data, this would be the "Image Footprints with Time Attributes" layer
      in the same group as the target "Image" layer being displayed. For
      vector (point, line, or polygon) data, the target layer can be queried
      directly. In either case, the attributes returned for the matching
      raster(s) or vector feature(s) will include the following:
    
    
          validtime: Valid timestamp.
    
    
          starttime: Display start time.
    
    
          endtime: Display end time.
    
    
          reftime: Reference time (sometimes reffered to as
          issuance time, cycle time, or initialization time).
    
    
          projmins: Number of minutes from reference time to valid
          time.
    
    
          desigreftime: Designated reference time; used as a
          common reference time for all items when individual reference
          times do not match.
    
    
          desigprojmins: Number of minutes from designated
          reference time to valid time.
    
    
    
    
      Query the nowCOAST LayerInfo web service, which has been created to
      provide additional information about each data layer in a service,
      including a list of all available "time stops" (i.e. "valid times"),
      individual timestamps, or the valid time of a layer's latest available
      data (i.e. "Product Time"). For more information about the LayerInfo
      web service, including examples of various types of requests, refer to
      the nowCOAST help documentation at:
      http://new.nowcoast.noaa.gov/help/#section=layerinfo
    

    References

    NWS, 2013: Sample Station Plot, NWS/NCEP/WPC, College Park, MD (Available at http://www.hpc.ncep.noaa.gov/html/stationplot.shtml). NWS, 2013: Terminology and Weather Symbols, NWS/NCEP/OPC, College Park, MD (Available at http://www.opc.ncep.noaa.gov/product_description/keyterm.shtml). NWS, 2013: How to read Surface weather maps, JetStream an Online School for Weather (Available at http://www.srh.noaa.gov/jetstream/synoptic/wxmaps.htm).

  16. a

    Image Footprints with Time Attributes

    • gis-fema.hub.arcgis.com
    • national-government.esrij.com
    • +15more
    Updated Oct 7, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COP_Support_CCG (2015). Image Footprints with Time Attributes [Dataset]. https://gis-fema.hub.arcgis.com/datasets/ce2c3dc498364fb999aad120b060699f
    Explore at:
    Dataset updated
    Oct 7, 2015
    Dataset authored and provided by
    COP_Support_CCG
    Area covered
    Description

    Last Updated: January 2015

    Map Information

    This nowCOAST time-enabled map service provides maps depicting the past four hours of surface meteorological analyses of air temperature, dew point temperature, visibility, wind velocity, wind speed, wind gust, and 1-hr accumulated precipitation from the NWS/NCEP Real-Time Mesoscale Analysis (RTMA) system. The horizontal spatial resolution depends on geographic region: 2.5 km (1.6 miles) horizontal resolution for CONUS, Hawaii, Puerto Rico and Guam and 3 km (1.86 miles) for Alaska region.

    The air and dew point temperatures are indicated on the map by different colors at 2 degree Fahrenheit increments from -30 to 130 degrees F in order to use same color legend throughout the year for the United States. The same color scale is used for displaying the NDFD maximum and minimum air temperature forecasts.

    The visibility is indicated on the map by different colors for the following ranges: 0 - 0.24, 0.25 - 0.49, 0.5 - 0.74, 0.75 - 0.99, 1.0 - 2.9, 3.0 - 4.9, 5.0 - 6.9, and 7.0 + miles in order to correspond with thresholds important to mariners and aviators as well as thresholds associated with visibility-related watches, warnings and advisories issued by the National Weather Service.

    The total precipitation amount is indicated by different colors at 0.01, 0.10, 0.25 and then at 1/4 inch intervals up to 4.0 (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14 inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on the NCEP Weather Prediction Center QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis.

    Wind speed and wind gust are indicated on the map by different colors for 5 knots increments up to 115 knots. The legend includes tick marks for both knots and miles per hour. The same color scale is used for displaying the NDFD wind speed/gust forecasts. The wind velocity is depicted by curved wind barbs along streamlines. The direction of the wind barb is indicated with an arrowhead. The flags on the wind barb are the standard meteorological convention in units of knots.

    The analyses are updated in the nowCOAST map service every hour. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updateschedule

    Background Information The NCEP RTMA system is an hourly, high-resolution, objective analysis/assimilation system for near-real surface weather conditions. RTMA system uses the Two-Dimensional Variational Analysis mode of NCEP's Gridpoint Statistical Interpolation (GSI). The first guess for the RTMA analyses for Alaska, Puerto Rico, Guam, and HI domains are provided by downscaled forecasts from NCEP's North American Mesoscale (NAM) Model. The first guess for OCONUS domain analyses are from the 1-hour forecasts of the NCEP Rapid Refresh system. The RTMA system was developed by NCEP/Environmental Modeling Center/Mesoscale Modeling Branch in cooperation with NOAA/Office of Oceanic and Atmospheric Research/Environmental Research Laboratory.

    Time Information

    This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.

    This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.

    In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.

    Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:

    Issue a returnUpdates=true request for an individual layer or for
    the service itself, which will return the current start and end times of
    available data, in epoch time format (milliseconds since 00:00 January 1,
    1970). To see an example, click on the "Return Updates" link at the bottom of
    this page under "Supported Operations". Refer to the
    ArcGIS REST API Map Service Documentation
    for more information.
    
    
      Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
      the proper layer corresponding with the target dataset. For raster
      data, this would be the "Image Footprints with Time Attributes" layer
      in the same group as the target "Image" layer being displayed. For
      vector (point, line, or polygon) data, the target layer can be queried
      directly. In either case, the attributes returned for the matching
      raster(s) or vector feature(s) will include the following:
    
    
          validtime: Valid timestamp.
    
    
          starttime: Display start time.
    
    
          endtime: Display end time.
    
    
          reftime: Reference time (sometimes reffered to as
          issuance time, cycle time, or initialization time).
    
    
          projmins: Number of minutes from reference time to valid
          time.
    
    
          desigreftime: Designated reference time; used as a
          common reference time for all items when individual reference
          times do not match.
    
    
          desigprojmins: Number of minutes from designated
          reference time to valid time.
    
    
    
    
      Query the nowCOAST LayerInfo web service, which has been created to
      provide additional information about each data layer in a service,
      including a list of all available "time stops" (i.e. "valid times"),
      individual timestamps, or the valid time of a layer's latest available
      data (i.e. "Product Time"). For more information about the LayerInfo
      web service, including examples of various types of requests, refer to
      the nowCOAST help documentation at:
      http://new.nowcoast.noaa.gov/help/#section=layerinfo
    

    References

    NWS, 2011: Real-Time Mesoscale Analysis (RTMA) Product Description Document, NOAA/NWS Silver Spring, MD (Available at http://products.weather.gov/PDD/RTMA_Operational_2011.pdf). NWS, 2013: Real-Time Mesoscale Analysis (RTMA) Documentation, NWS/NCEP/EMC, College Park, MD (Available at http://nomads.ncep.noaa.gov/txt_descriptions/RTMA_doc.shtml).

  17. Surface Weather Observations (latest in past hour)

    • data.gov.au
    html
    Updated Nov 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Bureau of Meteorology (2017). Surface Weather Observations (latest in past hour) [Dataset]. https://data.gov.au/dataset/ds-bom-ANZCW0503900208
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 17, 2017
    Dataset provided by
    Bureau of Meteorologyhttp://www.bom.gov.au/
    Description

    Surface weather observations are recorded half hourly, primarily from aerodromes with some additional data coming from unmanned automatic weather stations. In special conditions, observations may be …Show full descriptionSurface weather observations are recorded half hourly, primarily from aerodromes with some additional data coming from unmanned automatic weather stations. In special conditions, observations may be made earlier and for cost savings, some stations may only report hourly. The data show the latest reading at each site over the last 60 minutes. The following data are recorded: datetime, id_num (WMO index number, normally a unique id, but can be missing), id_name (abbreviated name, used to identify the observing site), date, time, wdir (wind direction, degrees from N), wspd (wind speed, knots), t_db (temperature dry bulb, degree C), dp (dew point, degree C), qnh (aircraft altimeter setting, hPa), rf9am (rainfall since 9am, mm), rf10m (rainfall last 10 minutes, mm), vic (visibility, m), avis (automatically measured visibility, m), gust (maximum wind gust last 10 minutes, knots), wx1int (first (most important) present weather intensity), wx1dsc (first (most important) present weather qualifier), wx1wx1 (first (most important) present weather type), wx1wx2 (additional weather type for mixed precipitation), wx1wx3 (additional weather type for mixed precipitation), wx2int (second (less important) present weather intensity), wx2dsc (second (less important) present weather qualifier), wx2wx1 (second (less important) present weather type), wx2wx2 (additional weather type for mixed precipitation), wx2wx3 (additional weather type for mixed precipitation), cld1amt (lowest cloud layer amount), cld1typ (lowest cloud layer type), cld1typ (lowest cloud layer base, m), cld2amt (second cloud layer amount), cld1typ (second cloud layer type), cld1base (second cloud layer base, m), cld3amt (third cloud layer amount), cld3typ (third cloud layer type), cld3base (lowest cloud layer base, m), cld4amt (fourth cloud amount), cld4typ (fourth cloud layer type), cld4base (fourth cloud layer base, m), ceil1amt (lowest cloud layer amount measured by ceilometer), ceil1base (lowest cloud layer base measured by ceilometer, m), ceil2amt (second cloud layer amount measured by ceilometer), ceil2base (second cloud layer base measured by ceilometer, m), ceil3amt (third cloud layer amount measured by ceilometer), ceil1base (third cloud layer base measured by ceilometer, m), rotation (required for rotation of wind barbs in MapServer), rh (relative humidity, %), stn_name (full station name). Information about codes, related parameter names and definitions can be found at [ http://www.bom.gov.au/weather-services/about/IDY03100.doc ].

  18. a

    Wind Speed 100m

    • hub.arcgis.com
    • indianamap.org
    • +1more
    Updated Jun 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2023). Wind Speed 100m [Dataset]. https://hub.arcgis.com/maps/a77b8146d5384588a5383ec6da270a0b
    Explore at:
    Dataset updated
    Jun 12, 2023
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    The following is excerpted from an unpublished report by Michael Brower (2004): "Using the MesoMap system, TrueWind has produced maps of mean wind speed in Indiana for heights of 30, 50, 70, and 100 m above ground, as well as a map of wind power at 50 m. TrueWind has also produced data files of the predicted wind speed frequency distribution and speed and energy by direction. The maps and data files are provided on a CD with the ArcReader software, which will enable users to view, print, copy, and query the maps and wind rose data. "The MesoMap system consists of an integrated set of atmospheric simulation models, databases, and computers and storage systems. At the core of MesoMap is MASS (Mesoscale Atmospheric Simulation System), a numerical weather model, which simulates the physics of the atmosphere. MASS is coupled to a simpler wind flow model, WindMap, which is used to refine the spatial resolution of MASS and account for localized effects of terrain and surface roughness. MASS simulates weather conditions over a region for 366 historical days randomly selected from a 15-year period. When the runs are finished, the results are input into WindMap. In this project, the MASS model was run on a grid spacing of 1.7 km and WindMap on a grid spacing of 200 m. "The wind maps show that the best wind resource in Indiana is found in the northcentral part of the state. The mean wind speed at 50 m height between Indianapolis, Kokomo, and Lafayette, and to the northwest of Lafayette, is predicted to be in the range of 6.5 to 7 m/s, and the mean wind power is predicted to be about 250 to 350 W/m2, or NREL class 2 to 3. In the rest of northern Indiana, the wind speed tends to be around 0.5 m/s lower, and the wind power is a solid class 2. In southern Indiana, a wind speed of 4.5 to 6 m/s and a wind power class of 1 to 2 prevails. The main reason for this wind resource distribution pattern is that the land is much more forested in the southern half of the state than in the northern half. Topography also plays a role, as does the track of the jet stream."

  19. d

    CustomWeather - Global Onshore and Offshore Wind Data Consulting

    • datarade.ai
    .json, .xml
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CustomWeather (2025). CustomWeather - Global Onshore and Offshore Wind Data Consulting [Dataset]. https://datarade.ai/data-products/customweather-onshore-and-offshore-wind-consulting-customweather
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    CustomWeather
    Area covered
    Tunisia, Turks and Caicos Islands, Sierra Leone, Niue, Jordan, Cyprus, British Indian Ocean Territory, Sao Tome and Principe, Botswana, Belarus
    Description

    CustomWeather delivers weather-informed operational intelligence, accurate forecasts to help with downtime and risk assessment, warning thresholds for forecast parameters, hind casts, and long-range forecasts to aid in site selection, installation, operations, maintenance, and decommissioning.

    Hour-by-Hour Forecasts: Available as 12 hour, 48 hour and 168 hour blocks. Each hourly forecast includes weather descriptions, wind conditions, temperature, dew point, humidity, visibility, rainfall totals, snowfall totals, and precipitation probability. Available for any global location.

    Custom Alerts - Custom alerts can be generated for any specific weather criteria, either in the past based on climate data or in the future based on weather forecasts. Weather alerts can also be generated that incorporate both past and future weather data.

    Hourly Historical Climate Information - A comprehensive land and sea database of hourly climate information going back to 1980 for any global, coordinate location. Normalized values can be delivered for various time periods. Fields include: daylight status, sky descriptor, precipitation descriptor, temperature, wind speed, wind direction, wind gusts, wave heights, wave direction, humidity, dew point, barometric tendency, sea level pressure, sky conditions, and precipitation totals for various time periods.

    Long-Range Forecasts - Features a month-by-month forecast for the next 9 months of anomalies in temperature and precipitation from normal. The variables are PRATE (precipitation rate over the entire month), TMP which is the average 2m daily temperature, TMAX and TMIN maximum and minimum daily temperatures -- all as anomaly values, or departure from normal for the month. The product is updated daily.

    Detailed Marine Forecast - Features an open ocean marine forecast for morning, afternoon, evening, and overnight for the next 5 days. Forecast includes wave description, surf description, wind speed and direction, significant wave height, mean wave direction and period, wind wave direction and period, peak wave direction and period, and sea surface temperature. The marine reports are available for any global, coordinate location. The information is updated four times per day

  20. d

    Wind Power - WINDPWR100_IN: Mean Wind Power at Height of 100 Meters above...

    • datadiscoverystudio.org
    Updated Jan 1, 2004
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TrueWind Solutions, LLC (data creator) (2004). Wind Power - WINDPWR100_IN: Mean Wind Power at Height of 100 Meters above Ground, Derived from Mesoscale Atmospheric Simulation System and WindMap(TrueWind Solutions, 200-Meter Grid) [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/acc455b438a64ebda19622ca4dc12fc6/html
    Explore at:
    Dataset updated
    Jan 1, 2004
    Dataset authored and provided by
    TrueWind Solutions, LLC (data creator)
    Area covered
    Description

    The following is excerpted from an unpublished report by Michael Brower (2004): 'Using the MesoMap system, TrueWind has produced maps of mean wind speed in Indiana for heights of 30, 50, 70, and 100 m above ground, as well as a map of wind power at 50 m. TrueWind has also produced data files of the predicted wind speed frequency distribution and speed and energy by direction. The maps and data files are provided on a CD with the ArcReader software, which will enable users to view, print, copy, and query the maps and wind rose data. 'The MesoMap system consists of an integrated set of atmospheric simulation models, databases, and computers and storage systems. At the core of MesoMap is MASS (Mesoscale Atmospheric Simulation System), a numerical weather model, which simulates the physics of the atmosphere. MASS is coupled to a simpler wind flow model, WindMap, which is used to refine the spatial resolution of MASS and account for localized effects of terrain and surface roughness. MASS simulates weather conditions over a region for 366 historical days randomly selected from a 15-year period. When the runs are finished, the results are input into WindMap. In this project, the MASS model was run on a grid spacing of 1.7 km and WindMap on a grid spacing of 200 m. 'The wind maps show that the best wind resource in Indiana is found in the northcentral part of the state. The mean wind speed at 50 m height between Indianapolis, Kokomo, and Lafayette, and to the northwest of Lafayette, is predicted to be in the range of 6.5 to 7 m/s, and the mean wind power is predicted to be about 250 to 350 W/m2, or NREL class 2 to 3. In the rest of northern Indiana, the wind speed tends to be around 0.5 m/s lower, and the wind power is a solid class 2. In southern Indiana, a wind speed of 4.5 to 6 m/s and a wind power class of 1 to 2 prevails. The main reason for this wind resource distribution pattern is that the land is much more forested in the southern half of the state than in the northern half. Topography also plays a role, as does the track of the jet stream.'

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CustomWeather (2023). CustomWeather Rainfall API: Rainfall Forecast and Historical Weather Data with Global Coverage [Dataset]. https://datarade.ai/data-products/customweather-rainfall-api-rainfall-forecast-and-historical-customweather

CustomWeather Rainfall API: Rainfall Forecast and Historical Weather Data with Global Coverage

Explore at:
.json, .xml, .csvAvailable download formats
Dataset updated
Jun 10, 2023
Dataset authored and provided by
CustomWeather
Area covered
South Georgia and the South Sandwich Islands, Qatar, Holy See, Tokelau, Brunei Darussalam, Fiji, Kuwait, Iran (Islamic Republic of), Ecuador, Lebanon
Description

The backbone of CustomWeather's forecasting arm is our proven, high-resolution model, the CW100. The CW100 Model is based on physics, not statistics or airport observations. As a result, it can achieve significantly better accuracy than statistical models, especially for non-airport locations. While other forecast models are designed to forecast the entire atmosphere, the CW100 greatly reduces computational requirements by focusing entirely on conditions near the ground. This reduction of computations allows it to resolve additional physical processes near the ground that are not resolved by other models. It also allows the CW100 to operate at a much higher resolution, typically 100x finer than standard models and other gridded forecasts.

Detailed Forecasts:
Features a detailed 48-hour outlook broken into four segments per day: morning, afternoon, evening, and overnight. Each segment provides condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, 6-hr forecasted precip amounts, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

Extended Forecasts Days 1-15:
Features condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

Hour-by-Hour Forecasts: Features Hour-by-Hour forecasts. The product is available as 12 hour, 48 hour and 168 hour blocks. Each hourly forecast includes weather descriptions, wind conditions, temperature, dew point, humidity, visibility, rainfall totals, snowfall totals, and precipitation probability. Available for over 85,000 forecast points globally. Updated four times per day.

Historical Longer Term Forecasts: Includes historical hourly and/or daily forecast data from 2009 until present date. Data will include condition descriptions, high/low temperatures, wind speed and direction, dew point, humidity, comfort level, UV index, probability of precipitation, rainfall and snowfall amounts. Available for over 85,000 forecast points globally. The information is updated four times per day.

Below are available time periods per each type of forecast from the GFS model and from CustomWeather's proprietary CW100 model:

GFS: 7-day hourly forecasts from August 2nd 2009; 48-hour to 5-day detailed forecasts from August 4th 2009; 15-day forecasts from October 9th 2008.

CW100: 7-day hourly forecasts from November 27, 2012; 48-hour detailed forecasts from November 12, 2011; 7-day forecasts from December 6, 2010, 15-day forecasts from August 6, 2012. CW100 is CustomWeather's proprietary model.

MOS: (Model Output Statistics) for any global location using archive of model and observation data. 0.25 degree resolution. 15-day hourly forecasts from January 1, 2017; 15-day forecasts from April 19, 2017.

Search
Clear search
Close search
Google apps
Main menu