100+ datasets found
  1. Stock Market: Historical Data of Top 10 Companies

    • kaggle.com
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies
    Explore at:
    zip(486977 bytes)Available download formats
    Dataset updated
    Jul 18, 2023
    Authors
    Khushi Pitroda
    Description

    The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

    Data Analysis Tasks:

    1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

    2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

    3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

    4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

    5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

    Machine Learning Tasks:

    1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

    2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

    3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

    4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

    5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

    The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

    It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

    This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

    By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

    Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

    In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

  2. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  3. Historical Stock Prices

    • kaggle.com
    Updated May 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sherry (2023). Historical Stock Prices [Dataset]. https://www.kaggle.com/datasets/sherrytp/stock-prices-5y
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 9, 2023
    Dataset provided by
    Kaggle
    Authors
    Sherry
    License

    https://www.reddit.com/wiki/apihttps://www.reddit.com/wiki/api

    Description

    The datasets contain historical stock or futures prices for my personal projects and learning purposes. The equity classification and data source are mainly from Yahoo Finance, Google Finance, or Nasdaq with API access. So you can practice EAD or predictive analysis on your own and assume the dataset structure will not change so much when used in the same platform later. In short, please do not contact me privately for recently updated data. Below is the breakdown for every file, as all came from different sources.

    Stock prices

    • StockScreener.xlsm
    • all_stocks_5yr.csv
    • df_featured.csv

    Wiki futures

    • CHRIS_metadata.csv
    • metadata.csv
    • StockScreener.xlsm

    Sharadar

    • Sharadar_Equity_open.xlsx
  4. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  5. Dataset: SCNI (SCNI) Stock Performance

    • zenodo.org
    csv
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nitiraj Kulkarni; Nitiraj Kulkarni; Jagadish Tawade; Jagadish Tawade (2024). Dataset: SCNI (SCNI) Stock Performance [Dataset]. http://doi.org/10.5281/zenodo.12744160
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nitiraj Kulkarni; Nitiraj Kulkarni; Jagadish Tawade; Jagadish Tawade
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.

  6. h

    deepstock-stock-historical-prices-dataset-processed

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lukas Abrie Nel, deepstock-stock-historical-prices-dataset-processed [Dataset]. https://huggingface.co/datasets/2084Collective/deepstock-stock-historical-prices-dataset-processed
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Lukas Abrie Nel
    Description

    2084Collective/deepstock-stock-historical-prices-dataset-processed dataset hosted on Hugging Face and contributed by the HF Datasets community

  7. NSE Stock Historical price data

    • kaggle.com
    zip
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nishant Singhal (2024). NSE Stock Historical price data [Dataset]. https://www.kaggle.com/datasets/stacknishant/nse-stock-historical-price-data
    Explore at:
    zip(21490351 bytes)Available download formats
    Dataset updated
    Jul 11, 2024
    Authors
    Nishant Singhal
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    NSE Stock Historical Price Data (Market Cap > 500 Cr)

    Dataset Description

    This dataset contains the historical closing price data for all stocks listed on the National Stock Exchange (NSE) of India with a market capitalization exceeding 500 crore INR. The dataset is ideal for analysts, researchers, and enthusiasts who wish to perform detailed analysis, develop trading algorithms, or study market trends of substantial companies within the Indian stock market.

    Features

    1. Stock Ticker: Unique symbol representing each stock.
    2. Date: The specific trading date.
    3. Closing Price: The price at which the stock closed on a given day.

    Source

    The data is sourced from official NSE records and includes all companies meeting the market capitalization criteria as of the latest update.

    Applications

    • Trend Analysis: Understand how stock prices of major companies have fluctuated over time.
    • Algorithmic Trading: Develop and backtest trading algorithms using real historical data.
    • Market Research: Study the performance of large-cap stocks to gain insights into market dynamics.
    • Educational Use: Serve as a practical dataset for educational purposes in finance, economics, and data science courses.

    Usage

    The dataset can be used for various purposes including but not limited to: - Financial modeling and forecasting - Risk management and portfolio optimization - Academic research and projects - Machine learning and AI-driven stock prediction models

  8. d

    Weighted Stock Price Index Historical Data

    • data.gov.tw
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Securities and Futures Bureau, Financial Supervisory Commission, Executive Yuan, R.O.C., Weighted Stock Price Index Historical Data [Dataset]. https://data.gov.tw/en/datasets/11755
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Securities and Futures Bureau, Financial Supervisory Commission, Executive Yuan, R.O.C.
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Historical data of the Taiwan Stock Exchange Weighted Index

  9. T

    DIA - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). DIA - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/dia:sm
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Nov 29, 2025
    Area covered
    Spain
    Description

    DIA stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  10. M

    U.S. - Railroad Stock Prices | Historical Chart | Data | 1855-1937

    • macrotrends.net
    csv
    Updated Nov 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). U.S. - Railroad Stock Prices | Historical Chart | Data | 1855-1937 [Dataset]. https://www.macrotrends.net/datasets/5338/us-railroad-stock-prices
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1855 - 1937
    Area covered
    United States
    Description

    U.S. - Railroad Stock Prices - Historical chart and current data through 1937.

  11. Google Stock Price Data (2020-2025) | GOOGL

    • kaggle.com
    zip
    Updated Feb 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Zohaib Zeeshan (2025). Google Stock Price Data (2020-2025) | GOOGL [Dataset]. https://www.kaggle.com/datasets/mzohaibzeeshan/google-stock-price-data-2020-2025-googl
    Explore at:
    zip(36400 bytes)Available download formats
    Dataset updated
    Feb 16, 2025
    Authors
    M. Zohaib Zeeshan
    Description

    About Dataset:

    This dataset includes the daily historical stock prices for Google (GOOGL) spanning from 2020 to 2025. It features essential financial metrics such as opening and closing prices, daily highs and lows, adjusted close prices, and trading volumes. The information offers valuable insights into the stock's performance over a five-year timeframe.

    Column Descriptions:

    • Price: Date of the stock data (needs cleaning as the first two rows are headers).
    • Adj Close: Adjusted closing price, accounting for events like dividends and splits.
    • Close: Closing price of the stock at the end of the trading day.
    • High: Highest price of the stock during the trading day.
    • Low: Lowest price of the stock during the trading day.
    • Open: Opening price of the stock at the start of the trading day.
    • Volume: Number of shares traded during the day.

    What Can You Achieve and Apply on This Data:

    • Time Series Analysis: Examine trends and patterns over time.
    • Stock Price Prediction: Use machine learning models to forecast future prices.
    • Volatility Analysis: Measure the stock's price fluctuations.
    • Technical Analysis: Calculate indicators like moving averages, RSI, and MACD.
    • Correlation Analysis: Investigate the relationship between volume and price changes.
    • Investment Strategy Backtesting: Test trading strategies like moving average crossovers.

    Note: 1. This data is scraped from Yahoo Finance by me using python code. 2. Some of the About Data is generated from AI, but verified from me.

  12. T

    Boston Beer | SAM - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Boston Beer | SAM - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/sam:us
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    Boston Beer stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  13. c

    S&P 500 stock Dataset

    • cubig.ai
    zip
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). S&P 500 stock Dataset [Dataset]. https://cubig.ai/store/products/359/sp-500-stock-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The S&P 500 stock data is a tabular stock market dataset of daily stock price information (market, high price, low price, closing price, trading volume, etc.) for the last five years (the latest data is until February 2018) of all companies in the S&P 500 index.

    2) Data Utilization (1) S&P 500 stock data has characteristics that: • Each row contains key stock metrics such as date, open, high, low, close, volume, and stock ticker name. • Data is provided as individual stock files and all stock integrated files, so it can be used for various analysis purposes. (2) S&P 500 stock data can be used to: • Stock Price Forecasting and Investment Strategy Development: Using historical stock price data, a variety of investment strategies and forecasting models can be developed, including time series forecasting, volatility analysis, and moving averages. • Market Trends and Corporate Comparison Analysis: It can be used to visualize stock price fluctuations across stocks, compare performance between stocks, analyze market trends, optimize portfolios, and more.

  14. Dow Jones: annual change in closing prices 1915-2021

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Dow Jones: annual change in closing prices 1915-2021 [Dataset]. https://www.statista.com/statistics/1317023/dow-jones-annual-change-historical/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Dow Jones Industrial Average (DJIA) is a stock market index used to analyze trends in the stock market. While many economists prefer to use other, market-weighted indices (the DJIA is price-weighted) as they are perceived to be more representative of the overall market, the Dow Jones remains one of the most commonly-used indices today, and its longevity allows for historical events and long-term trends to be analyzed over extended periods of time. Average changes in yearly closing prices, for example, shows how markets developed year on year. Figures were more sporadic in early years, but the impact of major events can be observed throughout. For example, the occasions where a decrease of more than 25 percent was observed each coincided with a major recession; these include the Post-WWI Recession in 1920, the Great Depression in 1929, the Recession of 1937-38, the 1973-75 Recession, and the Great Recession in 2008.

  15. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  16. T

    Costco Wholesale | COST - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). Costco Wholesale | COST - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/cost:us
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Aug 19, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    Costco Wholesale stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  17. T

    Match | MTCH - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). Match | MTCH - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/mtch:us
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    May 29, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    Match stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  18. Dataset: Invesco Bulletshares 2030 High Yield Corporate Bond ETF (BSJU)...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nitiraj Kulkarni; Nitiraj Kulkarni; Jagadish Tawade; Jagadish Tawade (2024). Dataset: Invesco Bulletshares 2030 High Yield Corporate Bond ETF (BSJU) Stock Performance [Dataset]. http://doi.org/10.5281/zenodo.12554127
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 26, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nitiraj Kulkarni; Nitiraj Kulkarni; Jagadish Tawade; Jagadish Tawade
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.

  19. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Dec 2, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.

  20. m

    WisdomTree Inc. - Stock Price Series

    • macro-rankings.com
    csv, excel
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings, WisdomTree Inc. - Stock Price Series [Dataset]. https://www.macro-rankings.com/Markets/Stocks/WT-NYSE
    Explore at:
    excel, csvAvailable download formats
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Stock Price Time Series for WisdomTree Inc.. WisdomTree, Inc., through its subsidiaries, operates as an exchange-traded funds (ETFs) sponsor and asset manager. It offers ETFs in equities, currency, fixed income, and alternatives asset classes. The company also licenses its indexes to third parties for proprietary products, as well as offers a platform to promote the use of WisdomTree ETFs in 401(k) plans. It develops index using its fundamentally weighted index methodology. In addition, the company provides investment advisory services. The company was founded in 1985 and is based in New York, New York.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies
Organization logo

Stock Market: Historical Data of Top 10 Companies

Unveiling the Rise and Fall of Tech Titans - A Journey Through Stocks

Explore at:
zip(486977 bytes)Available download formats
Dataset updated
Jul 18, 2023
Authors
Khushi Pitroda
Description

The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

Data Analysis Tasks:

1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

Machine Learning Tasks:

1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

Search
Clear search
Close search
Google apps
Main menu