39 datasets found
  1. o

    IvyDB Signed Volume - Daily Options Trading Volume Data

    • optionmetrics.com
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OptionMetrics (2023). IvyDB Signed Volume - Daily Options Trading Volume Data [Dataset]. https://optionmetrics.com/
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    OptionMetrics
    License

    https://optionmetrics.com/contact/https://optionmetrics.com/contact/

    Time period covered
    Jan 1, 2016 - Present
    Description

    The IvyDB Signed Volume dataset, available as an add-on product for IvyDB US, contains daily data on detailed option trading volume. Trades in the IvyDB US dataset are assigned as either buyer-initiated or seller-initiated based on the trade price and the bid-ask quote at the time of the trade. The total assigned daily volume is aggregated and updated nightly.

  2. d

    Crypto Options Data & Derivatives | Real-Time & Historical Cryptocurrency...

    • datarade.ai
    .json, .csv
    Updated Oct 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2024). Crypto Options Data & Derivatives | Real-Time & Historical Cryptocurrency Market Data [Dataset]. https://datarade.ai/data-products/coinapi-crypto-options-data-crypto-derivatives-data-opti-coinapi
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Oct 20, 2024
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Uruguay, Sierra Leone, Iceland, Brunei Darussalam, Niue, Montserrat, Uzbekistan, Tunisia, Russian Federation, Samoa
    Description

    Cryptocurrency options markets have grown increasingly sophisticated, requiring reliable data infrastructure to support trading and analysis. Our platform gives you direct access to comprehensive crypto options data through straightforward API connections.

    We capture the complete options chain across major crypto derivatives exchanges, delivering real-time and historical cryptocurrency market data that shows exactly what's happening in these complex markets. Each options contract is tracked with precision - strikes, expiration dates, premiums, open interest, and volume metrics all accessible through our standardized data feeds.

    The data is available through multiple integration methods depending on your needs. Use our REST API for flexible queries and historical analysis, WebSocket for real-time market monitoring, or FIX protocol for institutional-grade connectivity with minimal latency.

    Why work with us?

    Market Coverage & Data Types: - Real-time and historical data since 2010 (for chosen assets) - Full order book depth (L2/L3) - Tick-by-tick data - OHLCV across multiple timeframes - Market indexes (VWAP, PRIMKT) - Exchange rates with fiat pairs - Spot, futures, options, and perpetual contracts - Coverage of 90%+ global trading volume

    Technical Excellence: - 99% uptime guarantee - Multiple delivery methods: REST, WebSocket, FIX, S3 - Standardized data format across exchanges - Ultra-low latency data streaming - Detailed documentation - Custom integration assistance

    When options traders need reliable market intelligence, they don't leave it to chance. That's why trading desks across five continents, quantitative hedge funds managing billions, and fintech innovators building tomorrow's trading platforms all rely on our data infrastructure. We've established ourselves as a dependable source in a market where accuracy isn't just preferred - it's essential. While others promise comprehensive coverage, we deliver it consistently, trade after trade, day after day.

  3. PEAK Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Oct 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). PEAK Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/peak-options-futures-prediction.html
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    PEAK Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. NSE LEMONTREE Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). NSE LEMONTREE Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/nse-lemontree-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 27, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    NSE LEMONTREE Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. Foreign Exchange Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Foreign Exchange Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (Germany, Switzerland, UK), Middle East and Africa (UAE), APAC (China, India, Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/foreign-exchange-market-industry-analysis
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Foreign Exchange Market Size 2025-2029

    The foreign exchange market size is forecast to increase by USD 582 billion, at a CAGR of 10.6% between 2024 and 2029.

    The Foreign Exchange Market is segmented by type (reporting dealers, financial institutions, non-financial customers), trade finance instruments (currency swaps, outright forward and FX swaps, FX options), trading platforms (electronic trading, over-the-counter (OTC), mobile trading), and geography (North America: US, Canada; Europe: Germany, Switzerland, UK; Middle East and Africa: UAE; APAC: China, India, Japan; South America: Brazil; Rest of World). This segmentation reflects the market's global dynamics, driven by institutional trading, increasing digital adoption through electronic trading and mobile trading, and regional economic activities, with APAC markets like India and China showing significant growth alongside traditional hubs like the US and UK.
    The market is experiencing significant shifts driven by the escalating trends of urbanization and digitalization. These forces are creating 24x7 trading opportunities, enabling greater accessibility and convenience for market participants. However, the market's dynamics are not without challenges. The uncertainty of future exchange rates poses a formidable obstacle for businesses and investors alike, necessitating robust risk management strategies. As urbanization continues to expand and digital technologies reshape the trading landscape, market players must adapt to remain competitive. One significant trend is the increasing use of money transfer agencies, venture capital investments, and mutual funds in foreign exchange transactions. Companies seeking to capitalize on these opportunities must navigate the challenges effectively, ensuring they stay abreast of exchange rate fluctuations and implement agile strategies to mitigate risk.
    The ability to adapt and respond to these market shifts will be crucial for success in the evolving market.
    

    What will be the Size of the Foreign Exchange Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic and intricate realm of the market, entities such as algorithmic trading, order book, order management systems, and liquidity risk intertwine, shaping the ever-evolving market landscape. The market's continuous unfolding is characterized by the integration of various components, including sentiment analysis, Fibonacci retracement, mobile trading, and good-for-the-day orders. Market activities are influenced by factors like political stability, monetary policy, and market liquidity, which in turn impact economic growth and trade settlement. Technical analysis, with its focus on chart patterns and moving averages, plays a crucial role in informing trading decisions. The market's complexity is further amplified by the presence of entities like credit risk, counterparty risk, and operational risk.

    Central bank intervention, order execution, clearing and settlement, and trade confirmation are essential components of the market's infrastructure, ensuring a seamless exchange of currencies. Geopolitical risk, currency correlation, and inflation rates contribute to currency volatility, necessitating hedging strategies and risk management. Market risk, interest rate differentials, and commodity currencies influence trading strategies, while cross-border payments and brokerage services facilitate international trade. The ongoing evolution of the market is marked by the emergence of advanced trading platforms, automated trading, and real-time data feeds, enabling traders to make informed decisions in an increasingly interconnected and complex global economy.

    How is this Foreign Exchange Industry segmented?

    The foreign exchange industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Type
    
      Reporting dealers
      Financial institutions
      Non-financial customers
    
    
    Trade Finance Instruments
    
      Currency swaps
      Outright forward and FX swaps
      FX options
    
    
    Trading Platforms
    
      Electronic Trading
      Over-the-Counter (OTC)
      Mobile Trading
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        Germany
        Switzerland
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Type Insights

    The reporting dealers segment is estimated to witness significant growth during the forecast period.

    The market is a dynamic and complex ecosystem where various entities interplay to manage currency risks and facilitate international trade. Reporting dealers, as key participants,

  6. f

    Data from: The physics of stochastic processes applied to binary options in...

    • scielo.figshare.com
    jpeg
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    J. S. Lima; T. C. Abdias; I. M. Miranda; G. M. Viswanathan (2023). The physics of stochastic processes applied to binary options in financial markets [Dataset]. http://doi.org/10.6084/m9.figshare.14325899.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    SciELO journals
    Authors
    J. S. Lima; T. C. Abdias; I. M. Miranda; G. M. Viswanathan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The analogy between the problem of a player who bets money iteratively in a game of chance and a random walker in one dimension with an absorbing boundary is well known. These and other connections between finance and physics motivated the emergence of the field of econophysics in the 1990s. Since the subject matter is still not well known at the level of undergraduate physics programs, here we first review some basic concepts, such as martingales, financial derivatives and stock options. Our objectives are the following: (i) to explain how binary options work; (ii) to simulate stochastically the behavior of the balance sheet curve for different hit rates; (iii) to run tests of the success rates for the stochastic oscillator indicator in financial time series of historical data. This indicator is widely used by binary option traders, so it is an ideal illustrative example. Our results show that it is difficult to obtain consistent profits, even using strategies based on martingales or “Soros” leveraging to recover previous losses. The empirical characterization of this difficulty may help to make clearer the unpredictability and high degree of complexity of the behavior seen in financial markets.

  7. F

    ICE BofA US Corporate Index Option-Adjusted Spread

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ICE BofA US Corporate Index Option-Adjusted Spread [Dataset]. https://fred.stlouisfed.org/series/BAMLC0A0CM
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Area covered
    United States
    Description

    Graph and download economic data for ICE BofA US Corporate Index Option-Adjusted Spread (BAMLC0A0CM) from 1996-12-31 to 2025-07-21 about option-adjusted spread, corporate, and USA.

  8. F

    CBOE Volatility Index: VIX

    • fred.stlouisfed.org
    json
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CBOE Volatility Index: VIX [Dataset]. https://fred.stlouisfed.org/series/VIXCLS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for CBOE Volatility Index: VIX (VIXCLS) from 1990-01-02 to 2025-07-21 about VIX, volatility, stock market, and USA.

  9. Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2023). Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Switzerland, and UK), APAC (China, Hong Kong, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/securities-exchanges-market-analysis
    Explore at:
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Securities Exchanges Market Size 2025-2029

    The securities exchanges market size is forecast to increase by USD 56.67 billion at a CAGR of 12.5% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing demand for investment opportunities. This trend is fueled by a global economic recovery and a rising interest in various asset classes, particularly in emerging markets. Another key driver is the increasing focus on sustainable and environmental, social, and governance (ESG) investing. This shift reflects a growing awareness of the importance of long-term value creation and the role of exchanges in facilitating socially responsible investments. This trend is driven by the expanding securities business units, including stocks, bonds, mutual funds, and other securities, which cater to the needs of investment firms and individual investors. However, the market is not without challenges. Increasing market volatility poses a significant risk for exchanges and their clients.
    Furthermore, the rapid digitization of trading and the emergence of alternative trading platforms are disrupting traditional exchange business models. To navigate these challenges, exchanges must adapt by investing in technology, expanding their product offerings, and building strong regulatory frameworks. Data analytics and big data are also crucial tools for e-brokerage firms to gain insights and make informed decisions. By doing so, they can capitalize on the market's growth potential and maintain their competitive edge. Geopolitical tensions, economic instability, and regulatory changes can all contribute to market fluctuations and uncertainty.
    

    What will be the Size of the Securities Exchanges Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic market, financial instrument classification plays a crucial role in facilitating efficient trade matching through advanced execution quality metrics and order book liquidity. Quantitative trading models leverage options clearing corporation data to optimize portfolio holdings, while trade matching engines utilize high-speed data storage solutions and portfolio optimization algorithms to minimize latency and enhance market depth indicators. Data center infrastructure and network bandwidth capacity are essential components for supporting complex algorithmic trading strategies, including latency reduction and price volatility forecasting. Market impact measurement and risk assessment methodologies are integral to managing market impact and mitigating fraud, ensuring regulatory compliance through transaction reporting standards and regulatory compliance software.

    Exchange traded funds (ETFs) have gained popularity, necessitating robust quote dissemination systems and trade surveillance analytics. Server virtualization and cybersecurity threat mitigation strategies further strengthen the market's resilience, enabling seamless integration of data-driven quantitative models and sophisticated fraud detection algorithms. Additionally, users of online trading platforms can easily monitor the performance of their assets thanks to real-time stock data.

    How is this Securities Exchanges Industry segmented?

    The securities exchanges industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Service
    
      Market platforms
      Capital access platforms
      Others
    
    
    Trade Finance Instruments
    
      Equities
      Derivatives
      Bonds
      Exchange-traded funds
      Others
    
    
    Type
    
      Large-cap exchanges
      Mid-cap exchanges
      Small-cap exchanges
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Switzerland
        UK
    
    
      APAC
    
        China
        Hong Kong
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Service Insights

    The Market platforms segment is estimated to witness significant growth during the forecast period. The market is characterized by advanced technologies and systems that enable efficient price discovery, manage settlement risk, and ensure regulatory compliance. Market platforms, which include trading platforms, order-matching systems, and market data dissemination, hold the largest share of the market. These platforms facilitate the buying and selling of securities, providing market liquidity and transparency. Real-time market surveillance and high-frequency trading infrastructure are crucial components, ensuring fair and orderly markets and enabling efficient trade execution. Financial modeling techniques and algorithmic trading platforms optimize trading strategies, while electronic communication networks and central counterparty cleari

  10. CBOE Volatility Index Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Oct 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). CBOE Volatility Index Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/cboe-volatility-index-options-futures.html
    Explore at:
    Dataset updated
    Oct 16, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    CBOE Volatility Index Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. NSE MIDHANI Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Nov 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). NSE MIDHANI Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/nse-midhani-options-futures-prediction.html
    Explore at:
    Dataset updated
    Nov 12, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    NSE MIDHANI Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. NSE AMBUJACEM Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). NSE AMBUJACEM Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/nse-ambujacem-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 30, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    NSE AMBUJACEM Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. d

    Comprehensive Daily Data on 108K Public Companies Worldwide

    • datarade.ai
    Updated Jun 18, 1982
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Database (1982). Comprehensive Daily Data on 108K Public Companies Worldwide [Dataset]. https://datarade.ai/data-products/comprehensive-daily-data-on-108k-public-companies-worldwide-global-database
    Explore at:
    .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jun 18, 1982
    Dataset authored and provided by
    Global Database
    Area covered
    Papua New Guinea, Djibouti, Czech Republic, Zimbabwe, Kiribati, Saint Vincent and the Grenadines, Cook Islands, Faroe Islands, Fiji, Samoa
    Description

    Our dynamic data offering is designed to provide a comprehensive view of over 108,000 publicly listed companies across the globe. This service is an essential tool for financial analysts, investors, corporate strategists, and market researchers, offering versatile data delivery options.

    Key Features:

    Rich Company Fundamentals: Access detailed profiles with financials, management information, operational metrics, and strategic insights. Historical Data Depth: Utilize our extensive historical data for trend analysis and benchmarking. Flexible Delivery Options: Bulk Data Access: Ideal for high-volume needs, get comprehensive data in bulk. Daily Updates: Stay current with daily data refreshes for timely and relevant insights. API Integration: Seamlessly integrate our data into your systems with our API, ensuring efficient data retrieval and analysis. Global News Integration: Get the latest news and updates, providing context and insights into market movements and company-specific events. Intuitive User Interface: Navigate our platform with ease for efficient data retrieval. Customizable Alerts and Reports: Stay informed with tailored alerts and custom reports. Expert Support: Rely on our dedicated support team for assistance and guidance. Benefits:

    Enhance investment strategies with diverse and up-to-date data. Conduct in-depth market research and competitive analysis. Facilitate strategic planning and risk assessment with varied data access methods. Support academic research with a reliable data source. Ideal for:

    Investment and Financial Firms Market Analysts and Economists Corporate Strategy and Business Development Teams Academic Researchers in Finance and Economics

  14. TER Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). TER Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/ter-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    TER Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. What is a put option? (Forecast)

    • kappasignal.com
    Updated May 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is a put option? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-is-put-option.html
    Explore at:
    Dataset updated
    May 12, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is a put option?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. What is options trading? (Forecast)

    • kappasignal.com
    Updated May 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is options trading? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-is-options-trading.html
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is options trading?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. Data from: STAA Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). STAA Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/staa-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 6, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    STAA Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. MFS Intermediate Income: A Reliable Option? (MIN) (Forecast)

    • kappasignal.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). MFS Intermediate Income: A Reliable Option? (MIN) (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/mfs-intermediate-income-reliable-option.html
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    MFS Intermediate Income: A Reliable Option? (MIN)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. d

    Gamma Exposure (GEX) measurement of US stocks and options by Trading...

    • datarade.ai
    .json, .csv
    Updated Feb 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trading Volatility (2021). Gamma Exposure (GEX) measurement of US stocks and options by Trading Volatility [Dataset]. https://datarade.ai/data-products/gamma-exposure-gex-measurement-of-us-companies-and-indexes-tickerized-trading-volatility
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Feb 4, 2021
    Dataset authored and provided by
    Trading Volatility
    Area covered
    United States
    Description

    Our proprietary Skew-Adjusted Gamma Exposure measurements make adjustments to Naive GEX calculations to more accurately reflect actual gamma positioning of Market Makers who employ delta-hedging strategies. When Market Makers carry substantial negative gamma a security will often "over-react" to fundamental news. Conversely, when MMs carry substantial positive gamma a security will often "under-react" to news. Our data includes a quantified segmentation of a security's gamma distribution across all option strikes as well as across relevant expiration dates. Our website provides numerical, graphical, and historical views of all gamma data in our database. Additionally, our API access allows for easy download of csv files or import into Excel for further analysis and custom applications.

  20. ABX Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). ABX Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/abx-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 24, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ABX Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
OptionMetrics (2023). IvyDB Signed Volume - Daily Options Trading Volume Data [Dataset]. https://optionmetrics.com/

IvyDB Signed Volume - Daily Options Trading Volume Data

IvyDB Signed Volume

Explore at:
101 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 15, 2023
Dataset authored and provided by
OptionMetrics
License

https://optionmetrics.com/contact/https://optionmetrics.com/contact/

Time period covered
Jan 1, 2016 - Present
Description

The IvyDB Signed Volume dataset, available as an add-on product for IvyDB US, contains daily data on detailed option trading volume. Trades in the IvyDB US dataset are assigned as either buyer-initiated or seller-initiated based on the trade price and the bid-ask quote at the time of the trade. The total assigned daily volume is aggregated and updated nightly.

Search
Clear search
Close search
Google apps
Main menu