https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Free historical options data, dataset files in CSV format.
https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Historical option data in the last 24 years, dataset files in CSV format.
https://optionmetrics.com/contact/https://optionmetrics.com/contact/
The IvyDB Signed Volume dataset, available as an add-on product for IvyDB US, contains daily data on detailed option trading volume. Trades in the IvyDB US dataset are assigned as either buyer-initiated or seller-initiated based on the trade price and the bid-ask quote at the time of the trade. The total assigned daily volume is aggregated and updated nightly.
https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Historical option data in 2019 to 2021, dataset files in CSV format.
https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Historical option EOD data in 2021, dataset files in CSV format.
This dataset offers both live (delayed) prices and End Of Day time series on equity options
1/ Live (delayed) prices for options on European stocks and indices including:
Reference spot price, bid/ask screen price, fair value price (based on surface calibration), implicit volatility, forward
Greeks : delta, vega
Canari.dev computes AI-generated forecast signals indicating which option is over/underpriced, based on the holders strategy (buy and hold until maturity, 1 hour to 2 days holding horizon...). From these signals is derived a "Canari price" which is also available in this live tables.
Visit our website (canari.dev ) for more details about our forecast signals.
The delay ranges from 15 to 40 minutes depending on underlyings.
2/ Historical time series:
Implied vol
Realized vol
Smile
Forward
See a full API presentation here : https://youtu.be/qitPO-SFmY4 .
These data are also readily accessible in Excel thanks the provided Add-in available on Github: https://github.com/canari-dev/Excel-macro-to-consume-Canari-API
If you need help, contact us at: contact@canari.dev
User Guide: You can get a preview of the API by typing "data.canari.dev" in your web browser. This will show you a free version of this API with limited data.
Here are examples of possible syntaxes:
For live options prices: data.canari.dev/OPT/DAI data.canari.dev/OPT/OESX/0923 The "csv" suffix to get a csv rather than html formating, for example: data.canari.dev/OPT/DB1/1223/csv For historical parameters: Implied vol : data.canari.dev/IV/BMW
data.canari.dev/IV/ALV/1224
data.canari.dev/IV/DTE/1224/csv
Realized vol (intraday, maturity expressed as EWM, span in business days): data.canari.dev/RV/IFX ... Implied dividend flow: data.canari.dev/DIV/IBE ... Smile (vol spread between ATM strike and 90% strike, normalized to 1Y with factor 1/√T): data.canari.dev/SMI/DTE ... Forward: data.canari.dev/FWD/BNP ...
List of available underlyings: Code Name OESX Eurostoxx50 ODAX DAX OSMI SMI (Swiss index) OESB Eurostoxx Banks OVS2 VSTOXX ITK AB Inbev ABBN ABB ASM ASML ADS Adidas AIR Air Liquide EAD Airbus ALV Allianz AXA Axa BAS BASF BBVD BBVA BMW BMW BNP BNP BAY Bayer DBK Deutsche Bank DB1 Deutsche Boerse DPW Deutsche Post DTE Deutsche Telekom EOA E.ON ENL5 Enel INN ING IBE Iberdrola IFX Infineon IES5 Intesa Sanpaolo PPX Kering LOR L Oreal MOH LVMH LIN Linde DAI Mercedes-Benz MUV2 Munich Re NESN Nestle NOVN Novartis PHI1 Philips REP Repsol ROG Roche SAP SAP SNW Sanofi BSD2 Santander SND Schneider SIE Siemens SGE Société Générale SREN Swiss Re TNE5 Telefonica TOTB TotalEnergies UBSN UBS CRI5 Unicredito SQU Vinci VO3 Volkswagen ANN Vonovia ZURN Zurich Insurance Group
https://option.discount/privacy.htmlhttps://option.discount/privacy.html
Historical option sample data at 2022-08-24, dataset files in CSV format.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
Explore Options Price Reporting Authority (OPRA) through LSEG. OPRA collects, consolidates and disseminates information for US Options.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for CBOE Volatility Index: VIX (VIXCLS) from 1990-01-02 to 2025-07-30 about VIX, volatility, stock market, and USA.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
When you need to analyze crypto market history, batch processing often beats streaming APIs. That's why we built the Flat Files S3 API - giving analysts and researchers direct access to structured historical cryptocurrency data without the integration complexity of traditional APIs.
Pull comprehensive historical data across 800+ cryptocurrencies and their trading pairs, delivered in clean, ready-to-use CSV formats that drop straight into your analysis tools. Whether you're building backtest environments, training machine learning models, or running complex market studies, our flat file approach gives you the flexibility to work with massive datasets efficiently.
Why work with us?
Market Coverage & Data Types: - Comprehensive historical data since 2010 (for chosen assets) - Comprehensive order book snapshots and updates - Trade-by-trade data
Technical Excellence: - 99,9% uptime guarantee - Standardized data format across exchanges - Flexible Integration - Detailed documentation - Scalable Architecture
CoinAPI serves hundreds of institutions worldwide, from trading firms and hedge funds to research organizations and technology providers. Our S3 delivery method easily integrates with your existing workflows, offering familiar access patterns, reliable downloads, and straightforward automation for your data team. Our commitment to data quality and technical excellence, combined with accessible delivery options, makes us the trusted choice for institutions that demand both comprehensive historical data and real-time market intelligence
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Our dynamic data offering is designed to provide a comprehensive view of over 108,000 publicly listed companies across the globe. This service is an essential tool for financial analysts, investors, corporate strategists, and market researchers, offering versatile data delivery options.
Key Features:
Rich Company Fundamentals: Access detailed profiles with financials, management information, operational metrics, and strategic insights. Historical Data Depth: Utilize our extensive historical data for trend analysis and benchmarking. Flexible Delivery Options: Bulk Data Access: Ideal for high-volume needs, get comprehensive data in bulk. Daily Updates: Stay current with daily data refreshes for timely and relevant insights. API Integration: Seamlessly integrate our data into your systems with our API, ensuring efficient data retrieval and analysis. Global News Integration: Get the latest news and updates, providing context and insights into market movements and company-specific events. Intuitive User Interface: Navigate our platform with ease for efficient data retrieval. Customizable Alerts and Reports: Stay informed with tailored alerts and custom reports. Expert Support: Rely on our dedicated support team for assistance and guidance. Benefits:
Enhance investment strategies with diverse and up-to-date data. Conduct in-depth market research and competitive analysis. Facilitate strategic planning and risk assessment with varied data access methods. Support academic research with a reliable data source. Ideal for:
Investment and Financial Firms Market Analysts and Economists Corporate Strategy and Business Development Teams Academic Researchers in Finance and Economics
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for CBOE S&P 500 3-Month Volatility Index (VXVCLS) from 2007-12-04 to 2025-07-29 about VIX, volatility, 3-month, stock market, and USA.
➡️ You can choose from multiple data formats, delivery frequency options, and delivery methods;
➡️ You can select raw or clean and AI-enriched datasets;
➡️ Multiple APIs designed for effortless search and enrichment (accessible using a user-friendly self-service tool);
➡️ Fresh data: daily updates, easy change tracking with dedicated data fields, and a constant flow of new data;
➡️ You get all necessary resources for evaluating our data: a free consultation, a data sample, or free credits for testing our APIs.
Coresignal's employee and company data enables you to create and improve innovative data-driven solutions and extract actionable business insights. These datasets are popular among companies from different industries, including investment, sales, and HR technology.
✅ For investors
Gain strategic business insights, enhance decision-making, and maintain algorithms that signal investment opportunities with Coresignal's global Employee Data and Company Data.
Use cases
✅ For HR tech
Coresignal's global Employee Data and Company Data enable you to build and improve AI-based talent-sourcing and other HR technology solutions.
Use cases
✅ For sales tech
Companies use our large-scale datasets to improve their lead generation engines and power sales technology platforms.
Use cases
➡️ Why 400+ data-powered businesses choose Coresignal:
Mobility/Location data is gathered from location-aware mobile apps using an SDK-based implementation. All users explicitly consent to allow location data sharing using a clear opt-in process for our use cases and are given clear opt-out options. Factori ingests, cleans, validates, and exports all location data signals to ensure only the highest quality of data is made available for analysis.
Record Count:90 Billion+ Capturing Frequency: Once per Event Delivering Frequency: Once per Day Updated: Daily
Mobility Data Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings.
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited interval (daily/weekly/monthly/quarterly).
Business Needs: Consumer Insight: Gain a comprehensive 360-degree perspective of the customer to spot behavioral changes, analyze trends and predict business outcomes. Market Intelligence: Study various market areas, the proximity of points or interests, and the competitive landscape. Advertising: Create campaigns and customize your messaging depending on your target audience's online and offline activity. Retail Analytics: Analyze footfall trends in various locations and gain an understanding of customer personas.
Here's the data attributes: maid latitude longitude horizontal_accuracy timestamp id_type ipv4 ipv6 user_agent country state_hasc city_hasc postcode geohash hex8 hex9 carrier
https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Free historical options data, dataset files in CSV format.