68 datasets found
  1. o

    Free Data

    • optiondata.org
    Updated Sep 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Free Data [Dataset]. https://optiondata.org/
    Explore at:
    Dataset updated
    Sep 3, 2022
    License

    https://optiondata.org/about.htmlhttps://optiondata.org/about.html

    Time period covered
    Jan 1, 2013 - Jun 30, 2013
    Description

    Free historical options data, dataset files in CSV format.

  2. o

    Datasets in the last 24 years

    • optiondata.org
    Updated Sep 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Datasets in the last 24 years [Dataset]. https://optiondata.org/
    Explore at:
    Dataset updated
    Sep 3, 2022
    License

    https://optiondata.org/about.htmlhttps://optiondata.org/about.html

    Time period covered
    May 1, 2002 - Present
    Description

    Historical option data in the last 24 years, dataset files in CSV format.

  3. o

    IvyDB Signed Volume - Daily Options Trading Volume Data

    • optionmetrics.com
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OptionMetrics (2023). IvyDB Signed Volume - Daily Options Trading Volume Data [Dataset]. https://optionmetrics.com/
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    OptionMetrics
    License

    https://optionmetrics.com/contact/https://optionmetrics.com/contact/

    Time period covered
    Jan 1, 2016 - Present
    Description

    The IvyDB Signed Volume dataset, available as an add-on product for IvyDB US, contains daily data on detailed option trading volume. Trades in the IvyDB US dataset are assigned as either buyer-initiated or seller-initiated based on the trade price and the bid-ask quote at the time of the trade. The total assigned daily volume is aggregated and updated nightly.

  4. o

    Datasets in 2012 to 2024

    • optiondata.org
    Updated Sep 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Datasets in 2012 to 2024 [Dataset]. https://optiondata.org/
    Explore at:
    Dataset updated
    Sep 3, 2022
    License

    https://optiondata.org/about.htmlhttps://optiondata.org/about.html

    Description

    Historical option data in 2019 to 2021, dataset files in CSV format.

  5. o

    Datasets in 2024

    • optiondata.org
    Updated Sep 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Datasets in 2024 [Dataset]. https://optiondata.org/
    Explore at:
    Dataset updated
    Sep 3, 2022
    License

    https://optiondata.org/about.htmlhttps://optiondata.org/about.html

    Time period covered
    Jan 1, 2024 - Dec 31, 2024
    Description

    Historical option EOD data in 2021, dataset files in CSV format.

  6. d

    Historical volatility time series and Live prices on Equity Options

    • datarade.ai
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canari (2023). Historical volatility time series and Live prices on Equity Options [Dataset]. https://datarade.ai/data-products/historical-volatility-time-series-and-live-prices-on-equity-o-canari
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset authored and provided by
    Canari
    Area covered
    Belgium, Netherlands, France, United Kingdom, Sweden, Spain, Norway, Italy, Switzerland, Germany
    Description

    This dataset offers both live (delayed) prices and End Of Day time series on equity options

    1/ Live (delayed) prices for options on European stocks and indices including: Reference spot price, bid/ask screen price, fair value price (based on surface calibration), implicit volatility, forward Greeks : delta, vega Canari.dev computes AI-generated forecast signals indicating which option is over/underpriced, based on the holders strategy (buy and hold until maturity, 1 hour to 2 days holding horizon...). From these signals is derived a "Canari price" which is also available in this live tables.
    Visit our website (canari.dev ) for more details about our forecast signals.

    The delay ranges from 15 to 40 minutes depending on underlyings.

    2/ Historical time series: Implied vol Realized vol Smile Forward
    See a full API presentation here : https://youtu.be/qitPO-SFmY4 .

    These data are also readily accessible in Excel thanks the provided Add-in available on Github: https://github.com/canari-dev/Excel-macro-to-consume-Canari-API

    If you need help, contact us at: contact@canari.dev

    User Guide: You can get a preview of the API by typing "data.canari.dev" in your web browser. This will show you a free version of this API with limited data.

    Here are examples of possible syntaxes:

    For live options prices: data.canari.dev/OPT/DAI data.canari.dev/OPT/OESX/0923 The "csv" suffix to get a csv rather than html formating, for example: data.canari.dev/OPT/DB1/1223/csv For historical parameters: Implied vol : data.canari.dev/IV/BMW

    data.canari.dev/IV/ALV/1224

    data.canari.dev/IV/DTE/1224/csv

    Realized vol (intraday, maturity expressed as EWM, span in business days): data.canari.dev/RV/IFX ... Implied dividend flow: data.canari.dev/DIV/IBE ... Smile (vol spread between ATM strike and 90% strike, normalized to 1Y with factor 1/√T): data.canari.dev/SMI/DTE ... Forward: data.canari.dev/FWD/BNP ...

    List of available underlyings: Code Name OESX Eurostoxx50 ODAX DAX OSMI SMI (Swiss index) OESB Eurostoxx Banks OVS2 VSTOXX ITK AB Inbev ABBN ABB ASM ASML ADS Adidas AIR Air Liquide EAD Airbus ALV Allianz AXA Axa BAS BASF BBVD BBVA BMW BMW BNP BNP BAY Bayer DBK Deutsche Bank DB1 Deutsche Boerse DPW Deutsche Post DTE Deutsche Telekom EOA E.ON ENL5 Enel INN ING IBE Iberdrola IFX Infineon IES5 Intesa Sanpaolo PPX Kering LOR L Oreal MOH LVMH LIN Linde DAI Mercedes-Benz MUV2 Munich Re NESN Nestle NOVN Novartis PHI1 Philips REP Repsol ROG Roche SAP SAP SNW Sanofi BSD2 Santander SND Schneider SIE Siemens SGE Société Générale SREN Swiss Re TNE5 Telefonica TOTB TotalEnergies UBSN UBS CRI5 Unicredito SQU Vinci VO3 Volkswagen ANN Vonovia ZURN Zurich Insurance Group

  7. o

    Sample Data at 2022-08-24

    • optiondata.org
    Updated Sep 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Sample Data at 2022-08-24 [Dataset]. https://optiondata.org/
    Explore at:
    Dataset updated
    Sep 3, 2022
    License

    https://option.discount/privacy.htmlhttps://option.discount/privacy.html

    Time period covered
    Aug 24, 2022
    Description

    Historical option sample data at 2022-08-24, dataset files in CSV format.

  8. PEAK Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Oct 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). PEAK Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/peak-options-futures-prediction.html
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    PEAK Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. NSE LEMONTREE Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). NSE LEMONTREE Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/nse-lemontree-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 27, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    NSE LEMONTREE Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Options Price Reporting Authority

    • lseg.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2025). Options Price Reporting Authority [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/pricing-and-market-data/options-data/options-price-reporting-authority
    Explore at:
    csv,delimited,gzip,html,json,pcap,pdf,parquet,python,sql,string format,text,user interface,xml,zip archiveAvailable download formats
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Explore Options Price Reporting Authority (OPRA) through LSEG. OPRA collects, consolidates and disseminates information for US Options.

  11. F

    CBOE Volatility Index: VIX

    • fred.stlouisfed.org
    json
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CBOE Volatility Index: VIX [Dataset]. https://fred.stlouisfed.org/series/VIXCLS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 31, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for CBOE Volatility Index: VIX (VIXCLS) from 1990-01-02 to 2025-07-30 about VIX, volatility, stock market, and USA.

  12. CBOE Volatility Index Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Oct 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). CBOE Volatility Index Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/cboe-volatility-index-options-futures.html
    Explore at:
    Dataset updated
    Oct 16, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    CBOE Volatility Index Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Crypto Market Data CSV Export: Trades, Quotes & Order Book Access via S3

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI, Crypto Market Data CSV Export: Trades, Quotes & Order Book Access via S3 [Dataset]. https://datarade.ai/data-products/coinapi-comprehensive-crypto-market-data-in-flat-files-tra-coinapi
    Explore at:
    .json, .csvAvailable download formats
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Solomon Islands, Norfolk Island, Qatar, Montserrat, Kyrgyzstan, Liechtenstein, Northern Mariana Islands, Iraq, Tanzania, Latvia
    Description

    When you need to analyze crypto market history, batch processing often beats streaming APIs. That's why we built the Flat Files S3 API - giving analysts and researchers direct access to structured historical cryptocurrency data without the integration complexity of traditional APIs.

    Pull comprehensive historical data across 800+ cryptocurrencies and their trading pairs, delivered in clean, ready-to-use CSV formats that drop straight into your analysis tools. Whether you're building backtest environments, training machine learning models, or running complex market studies, our flat file approach gives you the flexibility to work with massive datasets efficiently.

    Why work with us?

    Market Coverage & Data Types: - Comprehensive historical data since 2010 (for chosen assets) - Comprehensive order book snapshots and updates - Trade-by-trade data

    Technical Excellence: - 99,9% uptime guarantee - Standardized data format across exchanges - Flexible Integration - Detailed documentation - Scalable Architecture

    CoinAPI serves hundreds of institutions worldwide, from trading firms and hedge funds to research organizations and technology providers. Our S3 delivery method easily integrates with your existing workflows, offering familiar access patterns, reliable downloads, and straightforward automation for your data team. Our commitment to data quality and technical excellence, combined with accessible delivery options, makes us the trusted choice for institutions that demand both comprehensive historical data and real-time market intelligence

  14. NSE MIDHANI Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Nov 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). NSE MIDHANI Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/nse-midhani-options-futures-prediction.html
    Explore at:
    Dataset updated
    Nov 12, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    NSE MIDHANI Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. TER Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). TER Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/ter-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    TER Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. d

    Comprehensive Daily Data on 108K Public Companies Worldwide

    • datarade.ai
    Updated Jun 18, 1982
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Database (1982). Comprehensive Daily Data on 108K Public Companies Worldwide [Dataset]. https://datarade.ai/data-products/comprehensive-daily-data-on-108k-public-companies-worldwide-global-database
    Explore at:
    .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jun 18, 1982
    Dataset authored and provided by
    Global Database
    Area covered
    Cook Islands, Czech Republic, Zimbabwe, Samoa, Papua New Guinea, Kiribati, Saint Vincent and the Grenadines, Faroe Islands, Djibouti, Fiji
    Description

    Our dynamic data offering is designed to provide a comprehensive view of over 108,000 publicly listed companies across the globe. This service is an essential tool for financial analysts, investors, corporate strategists, and market researchers, offering versatile data delivery options.

    Key Features:

    Rich Company Fundamentals: Access detailed profiles with financials, management information, operational metrics, and strategic insights. Historical Data Depth: Utilize our extensive historical data for trend analysis and benchmarking. Flexible Delivery Options: Bulk Data Access: Ideal for high-volume needs, get comprehensive data in bulk. Daily Updates: Stay current with daily data refreshes for timely and relevant insights. API Integration: Seamlessly integrate our data into your systems with our API, ensuring efficient data retrieval and analysis. Global News Integration: Get the latest news and updates, providing context and insights into market movements and company-specific events. Intuitive User Interface: Navigate our platform with ease for efficient data retrieval. Customizable Alerts and Reports: Stay informed with tailored alerts and custom reports. Expert Support: Rely on our dedicated support team for assistance and guidance. Benefits:

    Enhance investment strategies with diverse and up-to-date data. Conduct in-depth market research and competitive analysis. Facilitate strategic planning and risk assessment with varied data access methods. Support academic research with a reliable data source. Ideal for:

    Investment and Financial Firms Market Analysts and Economists Corporate Strategy and Business Development Teams Academic Researchers in Finance and Economics

  17. What is options trading? (Forecast)

    • kappasignal.com
    Updated May 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is options trading? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-is-options-trading.html
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is options trading?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. F

    CBOE S&P 500 3-Month Volatility Index

    • fred.stlouisfed.org
    json
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CBOE S&P 500 3-Month Volatility Index [Dataset]. https://fred.stlouisfed.org/series/VXVCLS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for CBOE S&P 500 3-Month Volatility Index (VXVCLS) from 2007-12-04 to 2025-07-29 about VIX, volatility, 3-month, stock market, and USA.

  19. d

    Coresignal | Employee Data | Company Data | Global / 783M+ Records / 5 Years...

    • datarade.ai
    .json, .csv
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coresignal, Coresignal | Employee Data | Company Data | Global / 783M+ Records / 5 Years Of Historical Data / Updated Daily [Dataset]. https://datarade.ai/data-products/coresignal-employee-and-company-data-global-660m-records-coresignal
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    Coresignal
    Area covered
    Qatar, Gibraltar, Bouvet Island, American Samoa, Sweden, Gabon, Seychelles, Rwanda, Lebanon, Kazakhstan
    Description

    ➡️ You can choose from multiple data formats, delivery frequency options, and delivery methods;

    ➡️ You can select raw or clean and AI-enriched datasets;

    ➡️ Multiple APIs designed for effortless search and enrichment (accessible using a user-friendly self-service tool);

    ➡️ Fresh data: daily updates, easy change tracking with dedicated data fields, and a constant flow of new data;

    ➡️ You get all necessary resources for evaluating our data: a free consultation, a data sample, or free credits for testing our APIs.

    Coresignal's employee and company data enables you to create and improve innovative data-driven solutions and extract actionable business insights. These datasets are popular among companies from different industries, including investment, sales, and HR technology.

    ✅ For investors

    Gain strategic business insights, enhance decision-making, and maintain algorithms that signal investment opportunities with Coresignal's global Employee Data and Company Data.

    Use cases

    1. Screen startups and industries showing early signs of growth
    2. Identify companies hungry for the next investment
    3. Check if a startup is about to reach the next maturity phase

    ✅ For HR tech

    Coresignal's global Employee Data and Company Data enable you to build and improve AI-based talent-sourcing and other HR technology solutions.

    Use cases

    1. Build AI-based tools
    2. Find qualified candidates
    3. Enrich existing hiring data

    ✅ For sales tech

    Companies use our large-scale datasets to improve their lead generation engines and power sales technology platforms.

    Use cases

    1. Extract targeted lead lists
    2. Fill in the gaps in your lead data
    3. Enable data-driven sales strategies

    ➡️ Why 400+ data-powered businesses choose Coresignal:

    1. Experienced data provider (in the market since 2016);
    2. Exceptional client service;
    3. Responsible and secure data collection.
  20. d

    Factori Mobility Data |US|+ One Year Historical Data Insights

    • datarade.ai
    .json, .csv
    Updated Mar 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2024). Factori Mobility Data |US|+ One Year Historical Data Insights [Dataset]. https://datarade.ai/data-products/factori-mobility-data-us-one-year-historical-data-insights-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Mar 5, 2024
    Dataset authored and provided by
    Factori
    Area covered
    United States
    Description

    Mobility/Location data is gathered from location-aware mobile apps using an SDK-based implementation. All users explicitly consent to allow location data sharing using a clear opt-in process for our use cases and are given clear opt-out options. Factori ingests, cleans, validates, and exports all location data signals to ensure only the highest quality of data is made available for analysis.

    Record Count:90 Billion+ Capturing Frequency: Once per Event Delivering Frequency: Once per Day Updated: Daily

    Mobility Data Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings.

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited interval (daily/weekly/monthly/quarterly).

    Business Needs: Consumer Insight: Gain a comprehensive 360-degree perspective of the customer to spot behavioral changes, analyze trends and predict business outcomes. Market Intelligence: Study various market areas, the proximity of points or interests, and the competitive landscape. Advertising: Create campaigns and customize your messaging depending on your target audience's online and offline activity. Retail Analytics: Analyze footfall trends in various locations and gain an understanding of customer personas.

    Here's the data attributes: maid latitude longitude horizontal_accuracy timestamp id_type ipv4 ipv6 user_agent country state_hasc city_hasc postcode geohash hex8 hex9 carrier

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2022). Free Data [Dataset]. https://optiondata.org/

Free Data

Free Data

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 3, 2022
License

https://optiondata.org/about.htmlhttps://optiondata.org/about.html

Time period covered
Jan 1, 2013 - Jun 30, 2013
Description

Free historical options data, dataset files in CSV format.

Search
Clear search
Close search
Google apps
Main menu