https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q1 2025 about sales, housing, and USA.
VITAL SIGNS INDICATOR Home Prices (EC7)
FULL MEASURE NAME Home Prices
LAST UPDATED August 2019
DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.
DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/
Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.
For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/
Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Our dataset features comprehensive housing market data, extracted from 250,000 records sourced directly from Redfin USA. Our Crawl Feeds team utilized proprietary in-house tools to meticulously scrape and compile this valuable data.
Key Benefits of Our Housing Market Data:
Unlock the Power of Redfin Data for Real Estate Professionals
Leveraging our Redfin properties dataset allows real estate professionals to make data-driven decisions. With detailed insights into property listings, sales history, and pricing trends, agents and investors can identify opportunities in the market more effectively. The data is particularly useful for comparing neighborhood trends, understanding market demand, and making informed investment decisions.
Enhance Your Real Estate Research with Custom Filters and Analysis
Our Redfin dataset is not only extensive but also customizable, allowing users to apply filters based on specific criteria such as property type, listing status, and geographic location. This flexibility enables researchers and analysts to drill down into the data, uncovering patterns and insights that can guide strategic planning and market entry decisions. Whether you're tracking the performance of single-family homes or exploring multi-family property trends, this dataset offers the depth and accuracy needed for thorough analysis.
Looking for deeper insights or a custom data pull from Redfin?
Send a request with just one click and explore detailed property listings, price trends, and housing data.
🔗 Request Redfin Real Estate Data
House prices grew year-on-year in most states in the U.S. in the third quarter of 2024. The District of Columbia was the only exception, with a decline of ***** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Hawaii—the state where homes appreciated the most—the increase exceeded ** percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2024, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2024.
Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.
A. Usecase/Applications possible with the data:
Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data
Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.
Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.
Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.
Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.
Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.
Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.
How does it work?
The average price per square foot of floor space in new single-family housing in the United States decreased after the great financial crisis, followed by several years of stagnation. Since 2012, the price has continuously risen, hitting *** U.S. dollars per square foot in 2022. In 2024, the average sales price of a new home exceeded ******* U.S. dollars. Development of house sales in the U.S. One of the reasons for rising property prices is the gradual growth of house sales between 2011 and 2020. This period was marked by the gradual recovery following the subprime mortgage crisis and a growing housing sentiment. Another significant factor for the housing demand was the growing number of new household formations each year. Despite this trend, housing transactions plummeted in 2021, amid soaring prices and borrowing costs. In 2021, the average construction cost for single-family housing rose by nearly ** percent year-on-year, and in 2022, the increase was even higher, at close to ** percent. Financing a house purchase Mortgage interest rates in the U.S. rose dramatically in 2022 and remained elevated until 2024. In 2020, a homebuyer could lock in a 30-year fixed interest rate of under ***** percent, whereas in 2024, the average rate for the same mortgage type was more than twice higher. That has led to a decline in homebuyer sentiment, and an increasing share of the population pessimistic about buying a home in the current market.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Zoopla Properties Listing dataset to explore detailed property information, including pricing, location, and features. Popular use cases include real estate market analysis, property valuation, and investment research.
Use our Zoopla Properties Listing Information dataset to explore detailed property listings, including property details, pricing, location, and market trends across various regions. This dataset provides valuable insights into property valuations, consumer preferences, and real estate dynamics, enabling businesses and researchers to make data-driven decisions.
Tailored for real estate professionals, investors, and market analysts, this dataset supports market trend analysis, property valuation assessments, and investment strategy development. Whether you're evaluating property investments, tracking market conditions, or conducting competitive analysis, the Zoopla Properties Listing Information dataset is a key resource for navigating the real estate landscape.
Dataset Features
Distribution
Usage
This dataset is ideal for a variety of high-impact applications:
Coverage
License
CUSTOM
Please review the respective licenses below:
Unlock the Potential of U.S. National MLS Real Estate Data
Discover the wealth of information encapsulated in licensing bulk MLS (Multiple Listing Service) data, a cornerstone of the real estate realm. From property particulars to market trends, delve into the significance and multifaceted utility of MLS data across diverse industries.
MLS Real Estate Data includes:
Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/" class="govuk-link">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The May 2025 release includes:
As we will be adding to the April data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Our extensive database contains approximately 800,000 active rental property listings from across the United States. Updated daily, this comprehensive collection provides real estate professionals, investors, and property managers with valuable market intelligence and business opportunities. Database Contents
Property Addresses: Complete location data including street address, city, state, ZIP code Listing Dates: Original listing date and most recent update date Availability Status: Currently available, pending, or recently rented properties Geographic Coverage: Properties spanning all 50 states and major metropolitan areas
Applications & Uses
Market Analysis: Track rental pricing trends across different regions and property types Investment Research: Identify high-opportunity markets with favorable rental conditions Lead Generation: Connect with property owners potentially needing management services Competitive Intelligence: Monitor listing volumes, vacancy rates, and market saturation Business Development: Target specific neighborhoods or property categories for expansion
File Format & Delivery
Organized in easy-to-use CSV format for seamless integration with data analysis tools Accessible through secure download portal or API connection Daily updates ensure you're working with the most current market information Custom filtering options available to narrow results by location, date range, or other criteria
Data Quality
Rigorous validation processes to ensure address accuracy Duplicate listing detection and removal Regular verification of active status Standardized format for consistent analysis
Subscription Benefits
Access to historical listing archives for trend analysis Advanced search capabilities to target specific property characteristics Regular market reports summarizing key trends and opportunities Custom data exports tailored to your specific business needs
AK ~ 1,342 listings AL ~ 6,636 listings AR ~ 4,024 listings AZ ~ 25,782 listings CA ~ 102,833 listings CO ~ 14,333 listings CT ~ 10,515 listings DC ~ 1,988 listings DE ~ 1,528 listings FL ~ 152,258 listings GA ~ 28,248 listings HI ~ 3,447 listings IA ~ 4,557 listings ID ~ 3,426 listings IL ~ 42,642 listings IN ~ 8,634 listings KS ~ 3,263 listings KY ~ 5,166 listings LA ~ 11,522 listings MA ~ 53,624 listings MD ~ 12,124 listings ME ~ 1,754 listings MI ~ 12,040 listings MN ~ 7,242 listings MO ~ 10,766 listings MS ~ 2,633 listings MT ~ 1,953 listings NC ~ 22,708 listings ND ~ 1,268 listings NE ~ 1,847 listings NH ~ 2,672 listings NJ ~ 31,286 listings NM ~ 2,084 listings NV ~ 13,111 listings NY ~ 94,790 listings OH ~ 15,843 listings OK ~ 5,676 listings OR ~ 8,086 listings PA ~ 37,701 listings RI ~ 4,345 listings SC ~ 8,018 listings SD ~ 1,018 listings TN ~ 15,983 listings TX ~ 132,620 listings UT ~ 3,798 listings VA ~ 14,087 listings VT ~ 946 listings WA ~ 15,039 listings WI ~ 7,393 listings WV ~ 1,681 listings WY ~ 730 listings
Grand Total ~ 977,010 listings
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Utrecht Housing Dataset is a synthetic dataset designed for students and practitioners to learn about data science and machine learning. Derived from the Dutch housing market, it is high-quality and noise-free, making it suitable for multiple algorithms such as decision trees, linear regression, logistic regression, and neural networks. This dataset was specifically created for educational purposes and emphasises responsible AI by being accessible to learners with diverse academic backgrounds.
The dataset is ideal for: - Machine Learning Applications: Training and testing predictive models for tax valuation, market value, and energy efficiency. - Feature Analysis: Exploring the relationships between housing attributes and target values. - Educational Purposes: Teaching students about regression, classification, and feature engineering. - Visualisation: Creating plots and graphs due to the well-structured and interpretable data.
The dataset provides a comprehensive representation of housing features relevant to the Dutch market, ensuring high usability for educational and experimental projects.
CC0 (Public Domain)
This dataset is designed for students, researchers, data scientists, and machine learning practitioners seeking to explore real-world applications of AI in housing markets.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Boston, MA (MSAD) (ATNHPIUS14454Q) from Q3 1977 to Q1 2025 about Boston, MA, appraisers, HPI, housing, price index, indexes, price, and USA.
Myanmar Residential Real Estate Market Size 2025-2029
The Myanmar residential real estate market size is forecast to increase by USD 233.2 million at a CAGR of 4.7% between 2024 and 2029.
The market is experiencing significant growth, driven by increasing urbanization and a burgeoning middle class population. Technological advancements are transforming the residential real estate industry, with digital platforms and mobile applications becoming essential tools for property listings, transactions, and customer engagement. However, regulatory uncertainty remains a major challenge, as the government implements new policies and regulations to govern the sector. This instability can impact investor confidence and hinder market growth. To capitalize on opportunities and navigate these challenges effectively, companies should closely monitor regulatory developments and adapt their strategies accordingly.
Additionally, leveraging technology to streamline operations and enhance customer experience will be crucial in a competitive market. Overall, the market presents both risks and rewards for investors and industry players, requiring a strategic and agile approach to succeed.
What will be the size of the Myanmar Residential Real Estate Market during the forecast period?
Request Free Sample
The residential real estate market continues to evolve, shaped by various factors influencing urban areas worldwide. Essential services and infrastructure, including transportation systems and functional infrastructure, remain crucial elements driving demand for urban living. Urban sustainability and the development of new metropolises and cities are gaining momentum, with a focus on tall structures and affordable housing solutions. Economic growth and living levels are key factors influencing the market's size and direction. Despite the overall positive trend, economic headwinds and poor management in some areas can lead to imbalances in the demand-supply equation. First-time buyers face challenges in securing real estate loans due to rising mortgage rates and transactional taxes.
Central banks and governments implement measures to stabilize the market, including adjusting mortgage interest rates and promoting inexpensive housing schemes. The industrial regions' growth and the establishment of new urban areas contribute to increasing transaction volumes, with a growing emphasis on urban planning and efficient decision-making processes. However, the market's dynamics are complex, with various factors influencing property values and the homeownership rate. Informal settlements and poor management in some areas can hinder the market's growth and stability.
How is this market segmented?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Landed houses and villas
Apartments and condominiums
Mode Of Booking
Sales
Rental/Lease
Geography
Myanmar
By Type Insights
The landed houses and villas segment is estimated to witness significant growth during the forecast period.
The market is primarily driven by the demand for landed houses and villas. These properties, which accounted for the largest market share in 2024, offer a unique blend of community and privacy. Villas, specifically, are standalone houses with a veranda or yard, typically located in exclusive areas. They provide a sense of community while maintaining privacy, distinguishing them from flats. In contrast, landed houses are stand-alone dwellings that can be constructed on any type of land. Property tax implications, investor confidence, and housing affordability significantly impact the residential real estate market. Property value fluctuations, home sellers, and housing supply also play crucial roles.
Urban planning strategies, such as sustainable housing development and urban regeneration, are essential to address affordability and urban mobility concerns. Real estate investment trends, including home renovation, property management services, and data analysis, are shaping the market. Smart home technology and urban design are also influencing housing demand. City branding, competitiveness, and resilience are key factors in urban development and planning. Infrastructure development, sustainable urbanism, and economic diversification are essential for creating smart cities and addressing urban sprawl.
Get a glance at the market report of share of various segments Request Free Sample
The Landed houses and villas segment was valued at USD 566.90 million in 2019 and showed a gradual increase during the forecast period.
Market Dynamics
Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help
Parcels and property data maintained and provided by Lee County Property Appraiser are converted to points. Property attribute data joined to parcel GIS layer by Lee County Government GIS. This dataset is generally used in spatial analysis.Process description: Parcel polygons, condominium points and property data provided by the Lee County Property Appraiser are processed by Lee County's GIS Department using the following steps:Join property data to parcel polygons Join property data to condo pointsConvert parcel polygons to points using ESRI's ArcGIS tool "Feature to Point" and designate the "Source" field "P".Load Condominium points into this layer and designate the "Source" field "C". Add X/Y coordinates in Florida State Plane West, NAD 83, feet using the "Add X/Y" tool.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983
Name
Type
Length
Description
STRAP
String
25
17-digit Property ID (Section, Township, Range, Area, Block, Lot)
BLOCK
String
10
5-digit portion of STRAP (positions 9-13)
LOT
String
8
Last 4-digits of STRAP
FOLIOID
Double
8
Unique Property ID
MAINTDATE
Date
8
Date LeePA staff updated record
MAINTWHO
String
20
LeePA staff who updated record
UPDATED
Date
8
Data compilation date
HIDE_STRAP
String
1
Confidential parcel ownership
TRSPARCEL
String
17
Parcel ID sorted by Township, Range & Section
DORCODE
String
2
Department of Revenue. See https://leepa.org/Docs/Codes/DOR_Code_List.pdf
CONDOTYPE
String
1
Type of condominium: C (commercial) or R (residential)
UNITOFMEAS
String
2
Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
NUMUNITS
Double
8
Number of Land Units (units defined in UNITOFMEAS)
FRONTAGE
Integer
4
Road Frontage in Feet
DEPTH
Integer
4
Property Depth in Feet
GISACRES
Double
8
Total Computed Acres from GIS
TAXINGDIST
String
3
Taxing District of Property
TAXDISTDES
String
60
Taxing District Description
FIREDIST
String
3
Fire District of Property
FIREDISTDE
String
60
Fire District Description
ZONING
String
10
Zoning of Property
ZONINGAREA
String
3
Governing Area for Zoning
LANDUSECOD
SmallInteger
2
Land Use Code
LANDUSEDES
String
60
Land Use Description
LANDISON
String
5
BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
SITEADDR
String
55
Lee County Addressing/E911
SITENUMBER
String
10
Property Location - Street Number
SITESTREET
String
40
Street Name
SITEUNIT
String
5
Unit Number
SITECITY
String
20
City
SITEZIP
String
5
Zip Code
JUST
Double
8
Market Value
ASSESSED
Double
8
Building Value + Land Value
TAXABLE
Double
8
Taxable Value
LAND
Double
8
Land Value
BUILDING
Double
8
Building Value
LXFV
Double
8
Land Extra Feature Value
BXFV
Double
8
Building Extra Feature value
NEWBUILT
Double
8
New Construction Value
AGAMOUNT
Double
8
Agriculture Exemption Value
DISAMOUNT
Double
8
Disability Exemption Value
HISTAMOUNT
Double
8
Historical Exemption Value
HSTDAMOUNT
Double
8
Homestead Exemption Value
SNRAMOUNT
Double
8
Senior Exemption Value
WHLYAMOUNT
Double
8
Wholly Exemption Value
WIDAMOUNT
Double
8
Widow Exemption Value
WIDRAMOUNT
Double
8
Widower Exemption Value
BLDGCOUNT
SmallInteger
2
Total Number of Buildings on Parcel
MINBUILTY
SmallInteger
2
Oldest Building Built
MAXBUILTY
SmallInteger
2
Newest Building Built
TOTALAREA
Double
8
Total Building Area
HEATEDAREA
Double
8
Total Heated Area
MAXSTORIES
Double
8
Tallest Building on Parcel
BEDROOMS
Integer
4
Total Number of Bedrooms
BATHROOMS
Double
8
Total Number of Bathrooms / Not For Comm
GARAGE
String
1
Garage on Property 'Y'
CARPORT
String
1
Carport on Property 'Y'
POOL
String
1
Pool on Property 'Y'
BOATDOCK
String
1
Boat Dock on Property 'Y'
SEAWALL
String
1
Sea Wall on Property 'Y'
NBLDGCOUNT
SmallInteger
2
Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
NMINBUILTY
SmallInteger
2
Oldest New Building Built
NMAXBUILTY
SmallInteger
2
Newest New Building Built
NTOTALAREA
Double
8
Total New Building Area
NHEATEDARE
Double
8
Total New Heated Area
NMAXSTORIE
Double
8
Tallest New Building on Parcel
NBEDROOMS
Integer
4
Total Number of New Bedrooms
NBATHROOMS
Double
8
Total Number of New Bathrooms/Not For Comm
NGARAGE
String
1
New Garage on Property 'Y'
NCARPORT
String
1
New Carport on Property 'Y'
NPOOL
String
1
New Pool on Property 'Y'
NBOATDOCK
String
1
New Boat Dock on Property 'Y'
NSEAWALL
String
1
New Sea Wall on Property 'Y'
O_NAME
String
30
Owner Name
O_OTHERS
String
120
Other Owners
O_CAREOF
String
30
In Care Of Line
O_ADDR1
String
30
Owner Mailing Address Line 1
O_ADDR2
String
30
Owner Mailing Address Line 2
O_CITY
String
30
Owner Mailing City
O_STATE
String
2
Owner Mailing State
O_ZIP
String
9
Owner Mailing Zip
O_COUNTRY
String
30
Owner Mailing Country
S_1DATE
Date
8
Most Current Sale Date > $100.00
S_1AMOUNT
Double
8
Sale Amount
S_1VI
String
1
Sale Vacant or Improved
S_1TC
String
2
Sale Transaction Code
S_1TOC
String
2
Sale Transaction Override Code
S_1OR_NUM
String
13
Original Record (Lee County Clerk)
S_2DATE
Date
8
Previous Sale Date > $100.00
S_2AMOUNT
Double
8
Sale Amount
S_2VI
String
1
Sale Vacant or Improved
S_2TC
String
2
Sale Transaction Code
S_2TOC
String
2
Sale Transaction Override Code
S_2OR_NUM
String
13
Original Record (Lee County Clerk)
S_3DATE
Date
8
Next Previous Sale Date > $100.00
S_3AMOUNT
Double
8
Sale Amount
S_3VI
String
1
Sale Vacant or Improved
S_3TC
String
2
Sale Transaction Code
S_3TOC
String
2
Sale Transaction Override Code
S_3OR_NUM
String
13
Original Record (Lee County Clerk)
S_4DATE
Date
8
Next Previous Sale Date > $100.00
S_4AMOUNT
Double
8
Sale Amount
S_4VI
String
1
Sale Vacant or Improved
S_4TC
String
2
Sale Transaction Code
S_4TOC
String
2
Sale Transaction Override Code
S_4OR_NUM
String
13
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Michigan (MISTHPI) from Q1 1975 to Q1 2025 about MI, appraisers, HPI, housing, price index, indexes, price, and USA.
Comprehensive Federal Tax Lien Data by CompCurve Unlock unparalleled insights into tax lien records with CompCurve Federal Tax Lien Data, a robust dataset sourced directly from IRS records. This dataset is meticulously curated to provide detailed information on federal tax liens, unsecured liens, and tax-delinquent properties across the United States. Whether you're a real estate investor, financial analyst, legal professional, or data scientist, this dataset offers a treasure trove of actionable data to fuel your research, decision-making, and business strategies. Available in flexible formats like .json, .csv, and .xls, it’s designed for seamless integration via bulk downloads or API access, ensuring you can harness its power in the way that suits you best.
IRS Tax Lien Data: Unsecured Liens in Focus At the heart of this offering is the IRS Tax Lien Data, capturing critical details about unsecured federal tax liens. Each record includes key fields such as taxpayer full name, taxpayer address (broken down into street number, street name, city, state, and ZIP), tax type (e.g., payroll taxes under Form 941), unpaid balance, date of assessment, and last day for refiling. Additional fields like serial number, document ID, and lien unit phone provide further granularity, making this dataset a goldmine for tracking tax liabilities. With a history spanning 5 years, this data offers a longitudinal view of tax lien trends, enabling users to identify patterns, assess risk, and uncover opportunities in the tax lien market.
Detailed Field Breakdown for Precision Analysis The Federal Tax Lien Data is structured with precision in mind. Every record includes a document_id (e.g., 2025200700126004) as a unique identifier, alongside the IRS-assigned serial_number (e.g., 510034325). Taxpayer details are comprehensive, featuring full name (e.g., CASTLE HILL DRUGS INC), and, where applicable, parsed components like first name, middle name, last name, and suffix. Address fields are equally detailed, with street number, street name, unit, city, state, ZIP, and ZIP+4 providing pinpoint location accuracy. Financial fields such as unpaid balance (e.g., $15,704.43) and tax period ending (e.g., 09/30/2024) offer a clear picture of tax debt, while place of filing and prepared_at_location tie the data to specific jurisdictions and IRS offices.
National Coverage and Historical Depth Spanning the entire United States, this dataset ensures national coverage, making it an essential resource for anyone needing a coast-to-coast perspective on federal tax liens. With 5 years of historical data, users can delve into past tax lien activity, track refiling deadlines (e.g., 01/08/2035), and analyze how tax debts evolve over time. This historical depth is ideal for longitudinal studies, predictive modeling, or identifying chronic tax delinquents—key use cases for real estate professionals, lien investors, and compliance experts.
Expanded Offerings: Secured Real Property Tax Liens Beyond unsecured IRS liens, CompCurve enhances its portfolio with the Real Property Tax Lien File, focusing on secured liens tied to real estate. This dataset includes detailed records of property tax liens, featuring fields like tax year, lien year, lien number, sale date, interest rate, and total due. Property-specific data such as property address, APN (Assessor’s Parcel Number), FIPS code, and property type ties liens directly to physical assets. Ownership details—including owner first name, last name, mailing address, and owner-occupied status—add further context, while financial metrics like face value, tax amount, and estimated equity empower users to assess investment potential.
Tax Delinquent Properties: A Wealth of Insights The Real Property Tax Delinquency File rounds out this offering, delivering a deep dive into tax-delinquent properties. With fields like tax delinquent flag, total due, years delinquent, and delinquent years, this dataset identifies properties at risk of lien escalation or foreclosure. Additional indicators such as bankruptcy flag, foreclosure flag, tax deed status, and payment plan flag provide a multi-dimensional view of delinquency status. Property details—property class, building sqft, bedrooms, bathrooms, and estimated value—combined with ownership and loan data (e.g., total open loans, estimated LTV) make this a powerhouse for real estate analysis, foreclosure tracking, and tax lien investment.
Versatile Formats and Delivery Options CompCurve ensures accessibility with data delivered in .json, .csv, and .xls formats, catering to a wide range of technical needs. Whether you prefer bulk downloads for offline analysis or real-time API access for dynamic applications, this dataset adapts to your workflow. The structured fields and consistent data types—such as varchar, decimal, date, and boolean—ensure compatibility with databases, spreadsheets, and programming environments, making it easy to integrate into your ...
Parcels and property data maintained and provided by Lee County Property Appraiser. This dataset includes condominium units. Property attribute data joined to parcel GIS layer by Lee County Government GIS.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983
Name
Type
Length
Description
STRAP
String
25
17-digit Property ID (Section, Township, Range, Area, Block, Lot)
BLOCK
String
10
5-digit portion of STRAP (positions 9-13)
LOT
String
8
Last 4-digits of STRAP
FOLIOID
Double
8
Unique Property ID
MAINTDATE
Date
8
Date LeePA staff updated record
MAINTWHO
String
20
LeePA staff who updated record
UPDATED
Date
8
Data compilation date
HIDE_STRAP
String
1
Confidential parcel ownership
TRSPARCEL
String
17
Parcel ID sorted by Township, Range & Section
DORCODE
String
2
Department of Revenue property classification code
CONDOTYPE
String
1
Type of condominium: C (commercial) or R (residential)
UNITOFMEAS
String
2
Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
NUMUNITS
Double
8
Number of Land Units (units defined in UNITOFMEAS)
FRONTAGE
Integer
4
Road Frontage in Feet
DEPTH
Integer
4
Property Depth in Feet
GISACRES
Double
8
Total Computed Acres from GIS
TAXINGDIST
String
3
Taxing District of Property
TAXDISTDES
String
60
Taxing District Description
FIREDIST
String
3
Fire District of Property
FIREDISTDE
String
60
Fire District Description
ZONING
String
10
Zoning of Property
ZONINGAREA
String
3
Governing Area for Zoning
LANDUSECOD
SmallInteger
2
Land Use Code
LANDUSEDES
String
60
Land Use Description
LANDISON
String
5
BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
SITEADDR
String
55
Lee County Addressing/E911
SITENUMBER
String
10
Property Location - Street Number
SITESTREET
String
40
Street Name
SITEUNIT
String
5
Unit Number
SITECITY
String
20
City
SITEZIP
String
5
Zip Code
JUST
Double
8
Market Value
ASSESSED
Double
8
Building Value + Land Value
TAXABLE
Double
8
Taxable Value
LAND
Double
8
Land Value
BUILDING
Double
8
Building Value
LXFV
Double
8
Land Extra Feature Value
BXFV
Double
8
Building Extra Feature value
NEWBUILT
Double
8
New Construction Value
AGAMOUNT
Double
8
Agriculture Exemption Value
DISAMOUNT
Double
8
Disability Exemption Value
HISTAMOUNT
Double
8
Historical Exemption Value
HSTDAMOUNT
Double
8
Homestead Exemption Value
SNRAMOUNT
Double
8
Senior Exemption Value
WHLYAMOUNT
Double
8
Wholly Exemption Value
WIDAMOUNT
Double
8
Widow Exemption Value
WIDRAMOUNT
Double
8
Widower Exemption Value
BLDGCOUNT
SmallInteger
2
Total Number of Buildings on Parcel
MINBUILTY
SmallInteger
2
Oldest Building Built
MAXBUILTY
SmallInteger
2
Newest Building Built
TOTALAREA
Double
8
Total Building Area
HEATEDAREA
Double
8
Total Heated Area
MAXSTORIES
Double
8
Tallest Building on Parcel
BEDROOMS
Integer
4
Total Number of Bedrooms
BATHROOMS
Double
8
Total Number of Bathrooms / Not For Comm
GARAGE
String
1
Garage on Property 'Y'
CARPORT
String
1
Carport on Property 'Y'
POOL
String
1
Pool on Property 'Y'
BOATDOCK
String
1
Boat Dock on Property 'Y'
SEAWALL
String
1
Sea Wall on Property 'Y'
NBLDGCOUNT
SmallInteger
2
Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
NMINBUILTY
SmallInteger
2
Oldest New Building Built
NMAXBUILTY
SmallInteger
2
Newest New Building Built
NTOTALAREA
Double
8
Total New Building Area
NHEATEDARE
Double
8
Total New Heated Area
NMAXSTORIE
Double
8
Tallest New Building on Parcel
NBEDROOMS
Integer
4
Total Number of New Bedrooms
NBATHROOMS
Double
8
Total Number of New Bathrooms/Not For Comm
NGARAGE
String
1
New Garage on Property 'Y'
NCARPORT
String
1
New Carport on Property 'Y'
NPOOL
String
1
New Pool on Property 'Y'
NBOATDOCK
String
1
New Boat Dock on Property 'Y'
NSEAWALL
String
1
New Sea Wall on Property 'Y'
O_NAME
String
30
Owner Name
O_OTHERS
String
120
Other Owners
O_CAREOF
String
30
In Care Of Line
O_ADDR1
String
30
Owner Mailing Address Line 1
O_ADDR2
String
30
Owner Mailing Address Line 2
O_CITY
String
30
Owner Mailing City
O_STATE
String
2
Owner Mailing State
O_ZIP
String
9
Owner Mailing Zip
O_COUNTRY
String
30
Owner Mailing Country
S_1DATE
Date
8
Most Current Sale Date > $100.00
S_1AMOUNT
Double
8
Sale Amount
S_1VI
String
1
Sale Vacant or Improved
S_1TC
String
2
Sale Transaction Code
S_1TOC
String
2
Sale Transaction Override Code
S_1OR_NUM
String
13
Original Record (Lee County Clerk)
S_2DATE
Date
8
Previous Sale Date > $100.00
S_2AMOUNT
Double
8
Sale Amount
S_2VI
String
1
Sale Vacant or Improved
S_2TC
String
2
Sale Transaction Code
S_2TOC
String
2
Sale Transaction Override Code
S_2OR_NUM
String
13
Original Record (Lee County Clerk)
S_3DATE
Date
8
Next Previous Sale Date > $100.00
S_3AMOUNT
Double
8
Sale Amount
S_3VI
String
1
Sale Vacant or Improved
S_3TC
String
2
Sale Transaction Code
S_3TOC
String
2
Sale Transaction Override Code
S_3OR_NUM
String
13
Original Record (Lee County Clerk)
S_4DATE
Date
8
Next Previous Sale Date > $100.00
S_4AMOUNT
Double
8
Sale Amount
S_4VI
String
1
Sale Vacant or Improved
S_4TC
String
2
Sale Transaction Code
S_4TOC
String
2
Sale Transaction Override Code
S_4OR_NUM
String
13
Original Record (Lee County Clerk)
LEGAL
String
255
Full Legal Description (On Deed)
GARBDIST
String
3
County Garbage Hauling Area
GARBTYPE
String
1
County Garbage Pick-up Type
GARBCOMCAT
String
1
County Garbage Commercial Category
GARBHEADER
String
1
Garbage Header Code
GARBUNITS
Double
8
Number of Garbage Units
CREATEYEAR
Description: This dataset provides historical housing prices scraped from Centaline Property Hong Kong, one of the largest real estate agencies in Hong Kong. The dataset includes information on the date of the transaction, the property address, floor plan, saleable area, unit rate, source, and district. The dataset covers a period of time spanning several years, allowing for analysis of trends and changes in the Hong Kong housing market.
Columns: Date: the date of the property transaction Address: the address of the property Floor Plan: -- Price: the price of the property Changes: any changes made to the property since the last transaction Saleable Area: the area of the property that can be sold to a buyer Unit Rate: the price per square foot of saleable area Source: the source of the data (Centaline Property Hong Kong/ Land Registry) District: the district in which the property is located in Hong Kong
U.S. National Property Data includes:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Current Tax Sale list’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/19064e25-0656-432f-a8b4-2ff3ed8cab59 on 12 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains all properties that are eligible for tax sale as of May 6, 2021. Note: properties may be removed from the sale daily and this dataset only represents a snapshot in time as of May 6. This dataset does not constitute an official copy of the list.
The data include owner-occupied properties. On May 3rd, 2021, Mayor Scott announced that tax lien certificates on these properties would not be sold, however they are included in these data for reference. Use the field "BEING_REMO" to filter out properties that will no longer be sold based on Mayor Scott’s announcement on May 3.
Data Dictionary
Field Name Description
BLOCK The block number for the property.
LOT The lot number for the property.
OWNERSHIP INDICATOR Indicator for type of ownership on property. H = Owner occupied principal residence D = Dual use N Not owner occupied
LAND USE CODE The land use code for the parcel. R = residential C = commercial I = Industrial
OWNER NAME The name of the owner of the property.
TAX BASE The value of the property.
CITY TAX The annual city property tax based on the assesed value of the property.
STATE TAX The annual state property tax based on the assesed value of the property.
TOTAL TAXES The sum of the "City Tax" and "State Tax" columns.
TOTAL 3 YEAR TAXES DUE The total remaining taxes owed for the property.
TOTAL LIENS DUE The sum of the columns "Total 3 Year Taxes Due" and "Total Lien". This is the current total amount of money owed including liens and past due taxes.
TOTAL LIEN The total amount of liens on the property.
YEARS ELIGIBLE FOR SALE The number of years the property has been eligible for tax sale in the past.
DEED DATE The date that ownership of the property was transferred to the owner.
COUNCIL DISTRICT The city council district where the property is located.
NEIGHBORHOOD The neighborhood where the property is located.
WHEN SOLD The last time the tax lien certificate on the property was sold. Street Address The street number and street name of the property. City The city the property is in (Baltimore). State The state the property is in (Maryland). ZIP The ZIP code of the property. Latitude The latitude of the property. Longitude The longitude of the property.
--- Original source retains full ownership of the source dataset ---
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q1 2025 about sales, housing, and USA.