Between January 1971 and May 2025, gold had average annual returns of **** percent, which was only slightly more than the return of commodities, with an annual average of around eight percent. The annual return of gold was over ** percent in 2024. What is the total global demand for gold? The global demand for gold remains robust owing to its historical importance, financial stability, and cultural appeal. During economic uncertainty, investors look for a safe haven, while emerging markets fuel jewelry demand. A distinct contrast transpired during COVID-19, when the global demand for gold experienced a sharp decline in 2020 owing to a reduction in consumer spending. However, the subsequent years saw an increase in demand for the precious metal. How much gold is produced worldwide? The production of gold depends mainly on geological formations, market demand, and the cost of production. These factors have a significant impact on the discovery, extraction, and economic viability of gold mining operations worldwide. In 2024, the worldwide production of gold was expected to reach *** million ounces, and it is anticipated that the rate of growth will increase as exploration technologies improve, gold prices rise, and mining practices improve.
As of 31 May 2025, gold had an average **-year return rate of ***** percent, which was slightly above than U.S. stocks with a rate of ***** percent.
As of 31 May 2025, MSCI U.S. had an average **-year return rate of ***** percent, whereas gold had a return rate of ***** percent. Gold mining overview In light of recent technological advancements shaping the gold mining market, global gold production has been rather stable in the last few years, hovering around ***** metric tons since 2020. Among nations, Australia holds the highest gold production, surpassing countries with the highest mine gold reserves. Gold as a financial security Known for its ability to provide diversification to investment portfolios, gold has exhibited a positive trend in its Gold’s return rate was particularly high in the early 2000s, and, despite experiencing a decline during the pandemic, it demonstrated a remarkable recovery since. Furthermore, gold serves as a valuable asset for a nation's economic stability, with the United States holding the highest amount of
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold rose to 3,362.51 USD/t.oz on August 1, 2025, up 2.25% from the previous day. Over the past month, Gold's price has risen 0.15%, and is up 37.65% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on August of 2025.
Gold is the most popular precious metal in the investment industry. The rate of return for gold investments fluctuated significantly during the period from 2002 to 2024 but generated positive returns in most years of the observed period. The return of gold as an investment reached almost ** percent in 2024, one of the highest recorded. Why is gold valuable? Gold is a precious metal with several practical uses, particularly in technology. For example, NASA uses gold to improve its lasers and protect sensitive things in space, including a part of the visor for its astronauts. However, a large share of the demand for gold worldwide is as an investment, particularly by central banks. Gold serves the purpose of an alternative to currency because it is relatively scarce but still has enough mine production to serve the financial sector. Gold as an investment Under the Bretton Woods agreement after World War II, the world’s major currencies were tied to the value of gold. This system, called the Gold Standard, ended in 1971. Still, most countries maintain significant gold reserves. Due to this history and the overall faith in the value of gold, the average gold price tends to increase in times of recession, making it an attractive investment in uncertain times.
In 2024, gold generated positive investment returns. That year, the return on gold was over ** percent. Moreover, the highest return was achieved by Bitcoin, with a return of ***** percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold Fields stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Monthly gold prices in USD since 1833 (sourced from the World Gold Council). The data is derived from historical records compiled by Timothy Green and supplemented by data provided by the World Bank...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset historical price data for XAU/USD (gold vs USD) from 2004 to Feb 2025, captured across multiple timeframes including 5-minute, 15-minute, 30-minute, 1-hour, 4-hour, daily, weekly, and monthly intervals. Dataset includes Open, High, Low, Close prices, and Volume data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset of historical annual gold prices from 1970 to 2024, including significant events and acts that impacted gold prices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold Fields reported 2.91 in Dividend Yield for its fiscal semester ending in December of 2024. Data for Gold Fields | GFI - Dividend Yield including historical, tables and charts were last updated by Trading Economics this last August in 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Centerra Gold stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold prices in , June, 2025 For that commodity indicator, we provide data from January 1960 to June 2025. The average value during that period was 600.07 USD per troy ounce with a minimum of 34.94 USD per troy ounce in January 1970 and a maximum of 3352.66 USD per troy ounce in June 2025. | TheGlobalEconomy.com
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IShares Gold Trust return on tangible equity for the quarter ending March 31, 2025 was 33.24. IShares Gold Trust average return on tangible equity for 2024 was 21.11, a 225.77% increase from 2023. IShares Gold Trust average return on tangible equity for 2023 was 6.48, a 185.46% increase from 2022. IShares Gold Trust average return on tangible equity for 2022 was 2.27, a 164.31% increase from 2021. Return on tangible equity can be defined as the amount of net income returned as a percentage of shareholders equity, after subtracting intangible assets, goodwill and preferred equity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kinross Gold return on investment for the quarter ending March 31, 2025 was 14.88. Kinross Gold average return on investment for 2024 was 8.22, a 213.74% increase from 2023. Kinross Gold average return on investment for 2023 was 2.62, a 142.95% increase from 2022. Kinross Gold average return on investment for 2022 was -6.1, a 151.17% decline from 2021. Roi - return on investment can be defined as an indicator of how profitable a company is relative to its assets invested by shareholders and long-term bond holders. Calculated by dividing a company's operating earnings by its long-term debt and shareholders equity.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold Road Resources stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Between January 1971 and May 2025, gold had average annual returns of **** percent, which was only slightly more than the return of commodities, with an annual average of around eight percent. The annual return of gold was over ** percent in 2024. What is the total global demand for gold? The global demand for gold remains robust owing to its historical importance, financial stability, and cultural appeal. During economic uncertainty, investors look for a safe haven, while emerging markets fuel jewelry demand. A distinct contrast transpired during COVID-19, when the global demand for gold experienced a sharp decline in 2020 owing to a reduction in consumer spending. However, the subsequent years saw an increase in demand for the precious metal. How much gold is produced worldwide? The production of gold depends mainly on geological formations, market demand, and the cost of production. These factors have a significant impact on the discovery, extraction, and economic viability of gold mining operations worldwide. In 2024, the worldwide production of gold was expected to reach *** million ounces, and it is anticipated that the rate of growth will increase as exploration technologies improve, gold prices rise, and mining practices improve.