Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6211 points on July 1, 2025, gaining 0.10% from the previous session. Over the past month, the index has climbed 4.64% and is up 12.75% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
We offer historical price data for equity indexes, ETFs and individual stocks in a Open/High/Low/Close (OHLC) format and can add almost any other required metric. We cover all major markets and many minor markets. Available for one-time purchase or with regular updates. Real-time/near-time (usually anything quicker than a 15min delay) requires an additional licence from the respective exchange, anything slower does not.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
FinFeedAPI provides equity market data covering over 11,000 symbols, featuring historical T+1 data with an unlimited loopback period. We deliver everything from detailed trade records and multiple levels of order book depth (Level 1-3) to crucial regulatory and system messages.
Our data is engineered for performance, featuring nano-second precision timestamps. This ensures a competitive edge for high-frequency trading by enabling fair, accurate, and auditable transaction sequencing, critical for regulatory compliance. Access comprehensive equity market intelligence directly through our robust API offerings.
Why FinFeedAPI?
Market Coverage & Data Depth: - Historical Data: T+1 data on 11K+ symbols with unlimited historical lookback. - Trade Feeds: Detailed trade records including timestamps, sizes, prices, and conditions (e.g., odd lot, intermarket sweep, extended hours). - Level 1 Quotes: Best bid/ask prices, sizes, and timestamps. - Level 2 Price Book: Market depth with multiple bid/ask prices and aggregate order sizes. - Level 3 Order Book: The complete order book detailing individual orders.
Essential Messages: - Admin Messages: Trading status, official open/close prices, auction states, short sale restrictions, retail liquidity indicators, security directory. - System Events: Exchange-level notifications for key trading session phases.
Precision & Reliability: - Nano-second Timestamps: Ensuring fair, accurate, and auditable transaction sequencing for HFT and compliance. - Institutional Trust: Relied upon by financial institutions for dependable equity market information.
Financial institutions and trading firms rely on FinFeedAPI for mission-critical equity market intelligence. We are committed to delivering clean, precise, and comprehensive data when it matters most. If you require dependable and granular stock market data, FinFeedAPI provides the actionable insights you need.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains the historical stock prices of Google (GOOGL) from January 2020 to March 2025. The data was fetched from Yahoo Finance using Python’s yfinance library.
📈 Key Features:
Timeframe: January 2020 - March 2025 Stock Exchange: NASDAQ Data Source: Yahoo Finance File Format: CSV 👨💻 Potential Uses:
Stock price prediction using Machine Learning Time-series analysis Stock market trend visualization Algorithmic trading research 📢 Note: This dataset is for educational and research purposes only. It should not be used for actual trading.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset consists of five CSV files that provide detailed data on a stock portfolio and related market performance over the last 5 years. It includes portfolio positions, stock prices, and major U.S. market indices (NASDAQ, S&P 500, and Dow Jones). The data is essential for conducting portfolio analysis, financial modeling, and performance tracking.
This file contains the portfolio composition with details about individual stock positions, including the quantity of shares, sector, and their respective weights in the portfolio. The data also includes the stock's closing price.
Ticker
: The stock symbol (e.g., AAPL, TSLA) Quantity
: The number of shares in the portfolio Sector
: The sector the stock belongs to (e.g., Technology, Healthcare) Close
: The closing price of the stock Weight
: The weight of the stock in the portfolio (as a percentage of total portfolio)This file contains historical pricing data for the stocks in the portfolio. It includes daily open, high, low, close prices, adjusted close prices, returns, and volume of traded stocks.
Date
: The date of the data point Ticker
: The stock symbol Open
: The opening price of the stock on that day High
: The highest price reached on that day Low
: The lowest price reached on that day Close
: The closing price of the stock Adjusted
: The adjusted closing price after stock splits and dividends Returns
: Daily percentage return based on close prices Volume
: The volume of shares traded that dayThis file contains historical pricing data for the NASDAQ Composite index, providing similar data as in the Portfolio Prices file, but for the NASDAQ market index.
Date
: The date of the data point Ticker
: The stock symbol (for NASDAQ index, this will be "IXIC") Open
: The opening price of the index High
: The highest value reached on that day Low
: The lowest value reached on that day Close
: The closing value of the index Adjusted
: The adjusted closing value after any corporate actions Returns
: Daily percentage return based on close values Volume
: The volume of shares tradedThis file contains similar historical pricing data, but for the S&P 500 index, providing insights into the performance of the top 500 U.S. companies.
Date
: The date of the data point Ticker
: The stock symbol (for S&P 500 index, this will be "SPX") Open
: The opening price of the index High
: The highest value reached on that day Low
: The lowest value reached on that day Close
: The closing value of the index Adjusted
: The adjusted closing value after any corporate actions Returns
: Daily percentage return based on close values Volume
: The volume of shares tradedThis file contains similar historical pricing data for the Dow Jones Industrial Average, providing insights into one of the most widely followed stock market indices in the world.
Date
: The date of the data point Ticker
: The stock symbol (for Dow Jones index, this will be "DJI") Open
: The opening price of the index High
: The highest value reached on that day Low
: The lowest value reached on that day Close
: The closing value of the index Adjusted
: The adjusted closing value after any corporate actions Returns
: Daily percentage return based on close values Volume
: The volume of shares tradedThis data is received using a custom framework that fetches real-time and historical stock data from Yahoo Finance. It provides the portfolio’s data based on user-specific stock holdings and performance, allowing for personalized analysis. The personal framework ensures the portfolio data is automatically retrieved and updated with the latest stock prices, returns, and performance metrics.
This part of the dataset would typically involve data specific to a particular user’s stock positions, weights, and performance, which can be integrated with the other files for portfolio performance analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia's main stock market index, the JCI, fell to 6903 points on July 1, 2025, losing 0.36% from the previous session. Over the past month, the index has declined 2.30% and is down 3.12% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart illustrating the performance of the Dow Jones Industrial Average (DJIA) market index over the last ten years. Each point of the stock market graph is represented by the daily closing price for the DJIA. Historical data can be downloaded via the red button on the upper left corner of the chart.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the NASDAQ Composite stock market index since 1971. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Full historical data for the S&P 500 (ticker ^GSPC), sourced from Yahoo Finance (https://finance.yahoo.com/).
Including Open, High, Low and Close prices in USD + daily volumes.
Info about S&P 500: https://en.wikipedia.org/wiki/S%26P_500
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom's main stock market index, the GB100, fell to 8761 points on June 30, 2025, losing 0.43% from the previous session. Over the past month, the index has declined 0.15%, though it remains 7.28% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest closing stock price for Microsoft as of June 18, 2025 is 480.24. An investor who bought $1,000 worth of Microsoft stock at the IPO in 1986 would have $8,056,718 today, roughly 8,057 times their original investment - a 25.94% compound annual growth rate over 39 years. The all-time high Microsoft stock closing price was 480.24 on June 18, 2025. The Microsoft 52-week high stock price is 481.00, which is 0.2% above the current share price. The Microsoft 52-week low stock price is 344.79, which is 28.2% below the current share price. The average Microsoft stock price for the last 52 weeks is 422.77. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Stock Prices for Germany (M1123ADEM324NNBR) from Jan 1870 to Dec 1913 about Germany, stock market, and indexes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hascol
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Stock market data can be interesting to analyze and as a further incentive, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I provide a dataset with historical stock prices (last 5 years) for all companies currently found on the S&P 500 index.
The script I used to acquire all of these .csv files can be found in this GitHub repository In the future if you wish for a more up to date dataset, this can be used to acquire new versions of the .csv files.
The data is presented in a couple of formats to suit different individual's needs or computational limitations. I have included files containing 5 years of stock data (in the all_stocks_5yr.csv and corresponding folder) and a smaller version of the dataset (all_stocks_1yr.csv) with only the past year's stock data for those wishing to use something more manageable in size.
The folder individual_stocks_5yr contains files of data for individual stocks, labelled by their stock ticker name. The all_stocks_5yr.csv and all_stocks_1yr.csv contain this same data, presented in merged .csv files. Depending on the intended use (graphing, modelling etc.) the user may prefer one of these given formats.
All the files have the following columns: Date - in format: yy-mm-dd Open - price of the stock at market open (this is NYSE data so all in USD) High - Highest price reached in the day Low Close - Lowest price reached in the day Volume - Number of shares traded Name - the stock's ticker name
I scraped this data from Google finance using the python library 'pandas_datareader'. Special thanks to Kaggle, Github and The Market.
This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. The million dollar question is: can you develop a model that can beat the market and allow you to make statistically informed trades!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6211 points on July 1, 2025, gaining 0.10% from the previous session. Over the past month, the index has climbed 4.64% and is up 12.75% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.