https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Free historical options data, dataset files in CSV format.
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
This Data is gathered from NSE website for the past three months I am posting this here so people can analyse this data and gather meaningful insights from this.
Example - Probability of Stock ending up at Max Pain with the help of Open Interest.
The dataset contains stock symbol with which it is traded, Expiry Date. Strike Price and the Option pricing of the Symbol at that Strike price.
I thank the people working at NSE for publishing these reports everyday.
Whenever we want to initiate an Options trade we look at various parameters like OpenInterest, Change in OI, Technical Analysis Indicators before deciding to Buy/Sell the Option. Most times we need to browse to multiple websites to gather the data we need, This is an example to show how you can customise the data for our needs.
We offer three easy-to-understand equity data packages to fit your business needs. Visit intrinio.com/pricing to compare packages.
Bronze
The Bronze package is ideal for developing your idea and prototyping your platform with high-quality EOD equity pricing data, standardized financial statement data, and supplementary fundamental datasets.
When you’re ready for launch, it’s a seamless transition to our Silver package for additional data sets, 15-minute delayed equity pricing data, expanded history, and more.
Bronze Benefits:
Silver
The Silver package is ideal for startups that are in development, testing, or in the beta launch phase. Hit the ground running with 15-minute delayed and historical intraday and EOD equity prices, plus our standardized and as-reported financial statement data with nine supplementary data sets, including insider transactions and institutional ownership.
When you’re ready to scale, easily move up to the Gold package for our full range of data sets and full history, real-time equity pricing data, premium support options, and much more.
Silver Benefits:
Gold
The Gold package is ideal for funded companies that are in the growth or scaling stage, as well as institutions that are innovating within the fintech space. This full-service solution offers our complete collection of equity pricing data feeds, from real-time to historical EOD, plus standardized financial statement data and nine supplementary feeds.
You’ll also have access to our wide range of modern access methods, third-party data via Intrinio’s API with licensing assistance, support from our team of expert engineers, custom delivery architectures, and much more.
Gold Benefits:
Platinum
Don’t see a package that fits your needs? Our team can design premium custom packages for institutions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Option Care Health stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for CBOE Volatility Index: VIX (VIXCLS) from 1990-01-02 to 2025-10-10 about VIX, volatility, stock market, and USA.
https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
Explore Options Price Reporting Authority (OPRA) through LSEG. OPRA collects, consolidates and disseminates information for US Options.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Finland - Total financial sector liabilities: Financial derivatives and employee stock options was 13.90 % of GDP in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for Finland - Total financial sector liabilities: Financial derivatives and employee stock options - last updated from the EUROSTAT on September of 2025. Historically, Finland - Total financial sector liabilities: Financial derivatives and employee stock options reached a record high of 90.10 % of GDP in December of 2011 and a record low of -0.40 % of GDP in December of 1995.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for ETC 6 Meridian Hedged Equity-Index Option Strategy ETF. The frequency of the observation is daily. Moving average series are also typically included. Under normal circumstances, the fund invests at least 80% of its net assets (plus the amount of any borrowings for investment purposes) in equity securities. The equity securities in which it invests are mainly common stocks. The fund may invest in equity securities of companies of any capitalization. It is non-diversified.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for FT Cboe Vest U.S. Equity Deep Buffer ETF - June. The frequency of the observation is daily. Moving average series are also typically included. Under normal market conditions, the fund will invest substantially all of its assets in FLexible EXchange® Options (FLEX Options) that reference the price performance of the SPDR® S&P 500® ETF Trust (the Underlying ETF). FLEX Options are customized equity or index option contracts that trade on an exchange, but provide investors with the ability to customize key contract terms like exercise prices, styles and expiration dates. It is non-diversified.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Preferred-Stock-and-Other-Adjustments Time Series for Charles Schwab Corp. The Charles Schwab Corporation, together with its subsidiaries, operates as a savings and loan holding company that provides wealth management, securities brokerage, banking, asset management, custody, and financial advisory services in the United States and internationally. The company operates in two segments, Investor Services and Advisor Services. It offers brokerage accounts with equity and fixed income trading, margin lending, options trading, futures and forex trading, and cash management capabilities, including certificates of deposit; third-party mutual funds through the Mutual Fund Marketplace and Mutual Fund OneSource service, as well as mutual fund trading and clearing services to broker-dealers; exchange-traded funds; advisory solutions for managed portfolios, separately managed accounts, customized personal advice for tailored portfolios, specialized planning, and full-time portfolio management; banking products comprising checking and savings accounts, first lien residential real estate mortgage loans, home equity lines of credit, and pledged asset lines; and trust custody services, personal trust reporting services, and administrative trustee services. It provides digital retirement calculators; integrated web-, mobile-, and software-based trading platforms, real-time market data, options trading, premium research, and multi-channel access; self-service education and support tools; online research and analysis tools; equity compensation plan sponsors full-service recordkeeping for stock plans, stock options, restricted stock, performance shares, and stock appreciation rights; retirement plan services; mutual fund clearing services; and advisor services, including interactive tools and educational content. The Company operates through branch offices. The Charles Schwab Corporation was founded in 1971 and is headquartered in Westlake, Texas.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for FT Cboe Vest U.S. Equity Deep Buffer ETF - November. The frequency of the observation is daily. Moving average series are also typically included. Under normal market conditions, the fund will invest substantially all of its assets in FLexible EXchange® Options (FLEX Options) that reference the price performance of the SPDR® S&P 500® ETF Trust (the Underlying ETF). FLEX Options are customized equity or index option contracts that trade on an exchange, but provide investors with the ability to customize key contract terms like exercise prices, styles and expiration dates. It is non-diversified.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Option Care Health reported $403.54M in Stock for its fiscal quarter ending in June of 2025. Data for Option Care Health | BIOS - Stock including historical, tables and charts were last updated by Trading Economics this last October in 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Our proprietary Skew-Adjusted Gamma Exposure measurements make adjustments to Naive GEX calculations to more accurately reflect actual gamma positioning of Market Makers who employ delta-hedging strategies. When Market Makers carry substantial negative gamma a security will often "over-react" to fundamental news. Conversely, when MMs carry substantial positive gamma a security will often "under-react" to news. Our data includes a quantified segmentation of a security's gamma distribution across all option strikes as well as across relevant expiration dates. Our website provides numerical, graphical, and historical views of all gamma data in our database. Additionally, our API access allows for easy download of csv files or import into Excel for further analysis and custom applications.
https://optiondata.org/about.htmlhttps://optiondata.org/about.html
Free historical options data, dataset files in CSV format.