100+ datasets found
  1. World Traffic Map

    • hub.arcgis.com
    • data-bgky.hub.arcgis.com
    • +1more
    Updated Dec 13, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2012). World Traffic Map [Dataset]. https://hub.arcgis.com/maps/esri::world-traffic-map/about
    Explore at:
    Dataset updated
    Dec 13, 2012
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map contains a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes. The map also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

  2. g

    Historical Traffic API

    • gimi9.com
    • data.nsw.gov.au
    • +1more
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Historical Traffic API [Dataset]. https://gimi9.com/dataset/au_nsw-2-historical-traffic-api
    Explore at:
    Dataset updated
    Jul 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The historical traffic API provides historical data on NSW incidents. Live Traffic NSW allows you to search for a particular date and location.

  3. C

    Chicago Traffic Tracker - Historical Congestion Estimates by Segment -...

    • data.cityofchicago.org
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated May 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2018). Chicago Traffic Tracker - Historical Congestion Estimates by Segment - 2011-2018 [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/77hq-huss
    Explore at:
    xml, csv, application/rdfxml, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    May 4, 2018
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for 1270 traffic segments, in selected time periods from August 2011 to May 2018. Newer records are in https://data.cityofchicago.org/d/sxs8-h27x. The most recent estimates for each segment are in https://data.cityofchicago.org/d/n4j6-wkkf.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions. Current estimates of traffic congestion by region are available at http://bit.ly/Vz3rIh.

  4. d

    Historic Traffic Data

    • data.gov.au
    esri featureserver +1
    Updated Jul 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Main Roads Western Australia (2021). Historic Traffic Data [Dataset]. https://data.gov.au/dataset/ds-wa-77e3ffe8-a899-4805-84e2-04f2c2559ae3
    Explore at:
    esri featureserver, htmlAvailable download formats
    Dataset updated
    Jul 29, 2021
    Dataset provided by
    Main Roads Western Australia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    NOTE: The Historic Traffic Data Dashboard & Feature Hosted Service have been retired.Network operations traffic data from Main Roads Western Australia for 2015 to 2019. The data provided includes …Show full descriptionNOTE: The Historic Traffic Data Dashboard & Feature Hosted Service have been retired.Network operations traffic data from Main Roads Western Australia for 2015 to 2019. The data provided includes data collected on the Perth Metropolitan State Road Network (PMSRN) at 15 minute intervals. The Historic Traffic Data is provided in CSV format per year. Each table has over 34 million rows and can be linked to the M-Links Road Network using the M-Links ID. A data dictionary for M-Links Road Network and the Historic Traffic Data is at the following link:https://bit.ly/2S86uSnNetwork Operations traffic data can also be accessed via the Daily Traffic Data API at the following link: https://bit.ly/34ZsyAK The network operations traffic data provided here is of variable quality and has not been checked, quality assured or manually corrected. An automated process is used to patch over missing or suspect data with the most representative data available within the database. Patches may be reapplied as new data becomes available and patched data may change over time. Note that you are accessing this data pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes. Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material:- “The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability.”

  5. d

    Traffic Count Segments

    • catalog.data.gov
    • data.tempe.gov
    • +11more
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Traffic Count Segments [Dataset]. https://catalog.data.gov/dataset/traffic-count-segments-4a2ab
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Description

    This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changesPublish Method: AutomaticData Dictionary

  6. P

    Traffic Dataset

    • paperswithcode.com
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Traffic Dataset [Dataset]. https://paperswithcode.com/dataset/traffic
    Explore at:
    Dataset updated
    Mar 13, 2024
    Description

    Abstract: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations.

    Data Set CharacteristicsNumber of InstancesAreaAttribute CharacteristicsNumber of AttributesDate DonatedAssociated TasksMissing Values
    Multivariate2101ComputerReal472020-11-17RegressionN/A

    Source: Liang Zhao, liang.zhao '@' emory.edu, Emory University.

    Data Set Information: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. For the detailed data information, please refer to the file README.docx.

    Attribute Information: The 47 features include: (1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), (2) week day (7 features), (3) hour of day (24 features), (4) road direction (4 features), (5) number of lanes (1 feature), and (6) name of the road (1 feature).

    Relevant Papers: Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

    Citation Request: To use these datasets, please cite the papers:

    Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

  7. d

    Historic traffic flow model

    • datos.gob.es
    • data.europa.eu
    Updated Jun 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ayuntamiento de Santiago de Compostela (2021). Historic traffic flow model [Dataset]. https://datos.gob.es/en/catalogo/l01150780-historico-del-modelo-de-flujo-de-trafico
    Explore at:
    Dataset updated
    Jun 17, 2021
    Dataset authored and provided by
    Ayuntamiento de Santiago de Compostela
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This collection of datasets contains all the estimations generated by the traffic flow model of the city of Santiago de Compostela. Each dataset of the collection contains the estimations generated during a specific month. Each record contains a reference to the identifier of a segment of the main street and road network of the city, the time instant corresponding to the estimation and the estimated value for the traffic flow intensity (number of vehicles per hour).

  8. C

    Chicago Traffic Tracker - Historical Congestion Estimates by Segment -...

    • data.cityofchicago.org
    • catalog.data.gov
    application/rdfxml +5
    Updated Jul 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Chicago Traffic Tracker - Historical Congestion Estimates by Segment - 2024-Current [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/4g9f-3jbs
    Explore at:
    xml, application/rssxml, csv, json, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Jul 5, 2025
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for over 1,000 traffic segments, starting 6/11/2024 (except for a single time slice on 3/8/2024). Older records are in https://data.cityofchicago.org/d/sxs8-h27x. The most recent estimates for each segment are in https://data.cityofchicago.org/d/n4j6-wkkf.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials.

    Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes.

    The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.

  9. Traffic Volume and Classification in Massachusetts

    • mass.gov
    Updated Sep 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massachusetts Department of Transportation (2017). Traffic Volume and Classification in Massachusetts [Dataset]. https://www.mass.gov/traffic-volume-and-classification-in-massachusetts
    Explore at:
    Dataset updated
    Sep 18, 2017
    Dataset authored and provided by
    Massachusetts Department of Transportationhttp://www.massdot.state.ma.us/
    Area covered
    Massachusetts
    Description

    A collection of historic traffic count data and guidelines for how to collect new data for Massachusetts Department of Transportation (MassDOT) projects.

  10. World Traffic Web Map

    • walmart-event-collaboration-portal-walmarttech.hub.arcgis.com
    Updated Jun 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walmart Emergency Management (2021). World Traffic Web Map [Dataset]. https://walmart-event-collaboration-portal-walmarttech.hub.arcgis.com/maps/c2b5a2a5f89942508b2ef1cf02acf610
    Explore at:
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    Walmarthttp://walmart.com/
    Authors
    Walmart Emergency Management
    Area covered
    Description

    This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. Historical traffic is based on the average of observed speeds over the past three years. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

  11. g

    COVID-19. Historical traffic data (weekly data)

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19. Historical traffic data (weekly data) [Dataset]. https://gimi9.com/dataset/eu_https-datos-madrid-es-egob-catalogo-300437-0-covid-trafico-historico-semanal/
    Explore at:
    Description

    Historical data of traffic measurement points in the period of the COVID19 pandemic, NOTICE: This dataset is no longer updated. Data are offered from 30-03.2020 to 9-08-2020. There is another set of data in this portal with the historical series: Traffic. History of traffic data since 2013 In this same portal you can find other related data sets such as: Traffic. Real-time traffic data . With real-time information (updated every 5 minutes) Traffic. Location of traffic measurement points. Map of traffic intensity plots, with the same information in KML format, and with the possibility of viewing it in Google Maps or Google Earth. And other traffic-related data sets. You can search for them by putting the word 'Traffic' in the search engine (top right). In the section 'Associated documentation', there is an explanatory document with the structure of the files and recommendations on the use of the data.

  12. A

    Traffic-Related Data

    • data.boston.gov
    html, pdf
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Transportation Department (2021). Traffic-Related Data [Dataset]. https://data.boston.gov/dataset/traffic-related-data
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    Boston Transportation Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.

    ~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.

    ~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.

    ~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.

    ~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.

  13. e

    Historic traffic flow model (2020-05)

    • data.europa.eu
    csv, provisional data
    Updated Jun 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Historic traffic flow model (2020-05) [Dataset]. https://data.europa.eu/data/datasets/historic-traffic-flow-model-2020-05?locale=en
    Explore at:
    csv, provisional dataAvailable download formats
    Dataset updated
    Jun 1, 2020
    Description

    This dataset provides access to historic values of the traffic flow model.. This dataset has been created in the context of the TRAFAIR project - https://trafair.eu/

  14. C

    Chicago Traffic Tracker - Historical Congestion Estimates by Region -...

    • data.cityofchicago.org
    • catalog.data.gov
    application/rdfxml +5
    Updated Jul 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Chicago Traffic Tracker - Historical Congestion Estimates by Region - 2018-Current [Dataset]. https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/kf7e-cur8
    Explore at:
    application/rdfxml, tsv, xml, csv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jul 5, 2025
    Dataset authored and provided by
    City of Chicago
    Area covered
    Chicago
    Description

    This dataset contains the historical estimated congestion for the 29 traffic regions, starting in approximately March 2018. Older records are in https://data.cityofchicago.org/d/emtn-qqdi. The most recent estimates for each segment are in https://data.cityofchicago.org/d/t2qc-9pjd.

    The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions. Current estimates of traffic congestion by region are available at http://bit.ly/103beCf.

  15. e

    Historic Traffic Data on Road Network - ArcGIS Online Item Page

    • esriaustraliahub.com.au
    • hub.arcgis.com
    • +1more
    Updated Jun 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Main Roads Western Australia (2020). Historic Traffic Data on Road Network - ArcGIS Online Item Page [Dataset]. https://www.esriaustraliahub.com.au/documents/739ed1accabd401b9d7a0343404851a6
    Explore at:
    Dataset updated
    Jun 25, 2020
    Dataset authored and provided by
    Main Roads Western Australiahttp://www.mainroads.wa.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    NOTE: The Historic Traffic Data Dashboard & Feature Hosted Service have been retired.Network operations traffic data from Main Roads Western Australia from 2013 onwards. The data provided includes data collected on the Perth Metropolitan State Road Network (PMSRN) at 15 minute intervals.

    The Historic Traffic Data is provided in CSV format per year. Each table has over 34 million rows and can be linked to the M-Links Road Network using the M-Links ID. A data dictionary for M-Links Road Network and the Historic Traffic Data is at the following link:https://mainroads.sharepoint.com/:w:/s/mr-opendata/EVHlw9Ils59Al4q3y7xxWxABBSOHVr4SCrxOYzJw1dReQg?e=KUhjhb

    The network operations traffic data provided here is of variable quality and has not been checked, quality assured or manually corrected. An automated process is used to patch over missing or suspect data with the most representative data available within the database. Patches may be reapplied as new data becomes available and patched data may change over time.

    Note that you are accessing this data pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes.

    Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material:- “The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability.”

  16. s

    Data from: Traffic Volumes

    • data.sandiego.gov
    Updated Jul 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Traffic Volumes [Dataset]. https://data.sandiego.gov/datasets/traffic-volumes/
    Explore at:
    csv csv is tabular data. excel, google docs, libreoffice calc or any plain text editor will open files with this format. learn moreAvailable download formats
    Dataset updated
    Jul 29, 2016
    Description

    The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.

  17. d

    Traffic Counts

    • catalog.data.gov
    • dataworks.siouxfalls.gov
    • +1more
    Updated Apr 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Sioux Falls GIS (2025). Traffic Counts [Dataset]. https://catalog.data.gov/dataset/traffic-counts-fc3cd
    Explore at:
    Dataset updated
    Apr 19, 2025
    Dataset provided by
    City of Sioux Falls GIS
    Description

    Feature layer containing authoritative traffic count points for Sioux Falls, South Dakota.The traffic counts listed are 24-hour, weekday, two-directional counts. Traffic counts are normally collected during the summer months, but may be taken any season, as weather permits. The traffic counts are factored by the day of the week as well as by the month of the year to become an Average Annual Daily Total (AADT). Traffic volumes (i.e. count data) can fluctuate depending on the month, week, day of collection; the weather, type of road surface, nearby construction, etc. All of the historical data should be averaged to reflect the "normal" traffic count. More specific count data (time, date, hourly volume) can be obtained from the Sioux Falls Engineering Division at 367-8601.

  18. e

    Historic Traffic Data at Signalised Intersections - ArcGIS Online Item Page

    • esriaustraliahub.com.au
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Main Roads Western Australia (2025). Historic Traffic Data at Signalised Intersections - ArcGIS Online Item Page [Dataset]. https://www.esriaustraliahub.com.au/documents/1162b9a95c85436abc23ad2c63f8e4d2
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Main Roads Western Australia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly extracts of historic Traffic Data at Signalised derived by SCATS.

    SCATS (Sydney Coordinated Adaptive Traffic System) is an intelligent transportation system that manages the dynamic timing of signal phases at traffic signals in real time. The system estimates the number of vehicles passing through the intersection and other information related to traffic signal timing. There is no guarantee this data is accurate or was used to make internal decisions in SCATS.

    The data is provided by controller site. Each site has its own parquet file for the month, which contains SCATS data produced by that site. The files use the LM site number format (e.g. – Site 1 is LM00001).

    Note that you are accessing the data provided by the links below pursuant to a Creative Commons (Attribution) Licence which has a disclaimer of warranties and limitation of liability. You accept that the data provided pursuant to the Licence is subject to changes and may have errors.

    Pursuant to section 3 of the Licence you are provided with the following notice to be included when you Share the Licenced Material:- “The Commissioner of Main Roads is the creator and owner of the data and Licenced Material, which is accessed pursuant to a Creative Commons (Attribution) Licence, which has a disclaimer of warranties and limitation of liability.”

    A data dictionary is provided at the document link.

    Monthly data extracts are in parquet format.

    The locations of the traffic signals are found at the link below.

    https://portal-mainroads.opendata.arcgis.com/datasets/traffic-signal-sitesAvailable in JSON format below.gisservices.mainroads.wa.gov.au/arcgis/rest/services/Connect/MapServer/0/query?where=1%3D1&outFields=*&returnGeometry=true&f=pjson

    The mapping of the detectors to the strategic approaches at an intersection is given at the link below.

    https://mainroadsopendata.mainroads.wa.gov.au/swagger/ui/index#/LmSaDetector

    Further information, including SCATS graphics, is available via the Traffic Signal information on Main Roads TrafficMap

    trafficmap - Main Roads WA

  19. G

    Traffic flow

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +2more
    csv, geojson, gpkg +5
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Traffic flow [Dataset]. https://open.canada.ca/data/en/dataset/c77c495a-2a4c-447e-9184-25722289007f
    Explore at:
    geojson, gpkg, shp, wfs, html, pdf, csv, wmsAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Linear network representing the estimated traffic flows for roads and highways managed by the Ministry of Transport and Sustainable Mobility (MTMD). These flows are obtained using a statistical estimation method applied to data from more than 4,500 collection sites spread over the main roads of Quebec. It includes DJMA (annual average daily flow), DJME (summer average daily flow), DJME (summer average daily flow (June, July, August, September) and DJMH (average daily winter flow (December, January, February, March) as well as other traffic data. It is important to note that these values are calculated for total traffic directions. Interactive map: Some files are accessible by querying a section of traffic à la carte with a click (the file links are displayed in the descriptive table that is displayed when clicking): • Historical aggregated data (PDF) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel)**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  20. a

    Annual Average Daily Traffic Historical TDA

    • hub.arcgis.com
    • gis-fdot.opendata.arcgis.com
    • +1more
    Updated Jan 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2018). Annual Average Daily Traffic Historical TDA [Dataset]. https://hub.arcgis.com/maps/fdot::annual-average-daily-traffic-historical-tda
    Explore at:
    Dataset updated
    Jan 3, 2018
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    The FDOT Historical Annual Average Daily Traffic feature class provides spatial information on Annual Average Daily Traffic section breaks for the state of Florida. In addition, it provides affiliated traffic information like KFCTR, DFCTR and TFCTR among others. It contains five years of AADT data including the most currently available year. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 06/21/2025.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/aadt_historical.zip

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2012). World Traffic Map [Dataset]. https://hub.arcgis.com/maps/esri::world-traffic-map/about
Organization logo

World Traffic Map

Explore at:
12 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 13, 2012
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This map contains a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes. The map also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

Search
Clear search
Close search
Google apps
Main menu