The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.
Historical weather data is essential for understanding environmental trends, assessing climate risk, and building predictive models for infrastructure, agriculture, and sustainability initiatives. Among all variables, temperature and humidity serve as core indicators of environmental change and operational risk.
Ambios offers high-resolution Historical Weather Data focused on temperature and humidity, sourced from over 3,000+ first-party sensors across 20 countries. This dataset provides hyperlocal, verified insights for data-driven decision-making across industries.
-Historical weather records for temperature and humidity -First-party sensor data from a decentralized network -Global coverage across 20 countries and diverse climate zones -Time-stamped, high-frequency measurements with environmental context -Designed to support ESG disclosures, research, risk modeling, and infrastructure planning
Use cases include:
-Long-term climate trend analysis and model validation -Historical baselining for ESG and sustainability frameworks -Resilience planning for heatwaves, humidity spikes, and changing climate conditions -Agricultural research and water management strategy -Infrastructure and energy load forecasting -Academic and scientific studies on regional weather patterns
Backed by Ambios’ decentralized physical infrastructure (DePIN), the data is reliable, traceable, and scalable—empowering organizations to make informed decisions grounded in historical environmental intelligence.
Whether you're building ESG models, planning smart infrastructure, or conducting climate research, Ambios Historical Weather Data offers the precision and credibility needed for long-term environmental insight.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.
Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities
This dataset provide:
Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.
Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.
Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.
Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.
Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.
Number of missing daily Tmax, Tmin, and precipitation values are included for each city.
Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.
The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).
Resources:
See included README file for more information.
Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1
Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538
ACIS database for historical observations: http://scacis.rcc-acis.org/
GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
Station information for each city can be accessed at: http://threadex.rcc-acis.org/
2024 August updated -
Annual calculations for 2022 and 2023 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.
Note that future updates may be infrequent.
2022 January updated -
Annual calculations for 2021 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.
2021 January updated -
Annual calculations for 2020 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.
2020 January updated -
Annual calculations for 2019 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.
Thresholds for all 210 cities were combined into one single file – Thresholds.csv.
2019 June updated -
Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.
README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).
The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in April 2025, the average temperature across the North American country stood at 12.02 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.
The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.
Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is an hourly future weather dataset for energy modeling applications. The dataset is primarily based on the output of a regional climate model (RCM), i.e., the Weather Research and Forecasting (WRF) model version 3.3.1. The WRF simulations are driven by the output of a general circulation model (GCM), i.e., the Community Climate System Model version 4 (CCSM4).
This dataset is in the EPW format, which can be read or translated by more than 25 building energy modeling programs (e.g., EnergyPlus, ESP-r, and IESVE), energy system modeling programs (e.g., System Advisor Model (SAM)), indoor air quality analysis programs (e.g., CONTAM), and hygrothermal analysis programs (e.g., WUFI). It contains 13 weather variables, which are the Dry-Bulb Temperature, Dew Point Temperature, Relative Humidity, Atmospheric Pressure, Horizontal Infrared Radiation Intensity from Sky, Global Horizontal Irradiation, Direct Normal Irradiation, Diffuse Horizontal Irradiation, Wind Speed, Wind Direction, Sky Cover, Albedo, and Liquid Precipitation Depth.
This dataset provides future weather data under two emissions scenarios - RCP4.5 and RCP8.5 - across two 10-year periods (2045-2054 and 2085-2094). It also includes simulated historical weather data for 1995-2004 to serve as the baseline for climate impact assessments. We strongly recommend using this built-in baseline rather than external sources (e.g., TMY3) for two key reasons: (1) it shares the same model grid as the future projections, thereby minimizing geographic-averaging bias, and (2) both historical and future datasets were generated by the same RCM, so their differences yield anomalies largely free of residual model bias.
This dataset offers a spatial resolution of 12 km by 12 km with extensive coverage across most of North America. Due to the enormous size of the entire dataset, in the first stage of its distribution, we provide weather data for the centroid of each Public Use Microdata Area (PUMA), excluding Hawaii. PUMAs are non-overlapping, statistical geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than 100,000 people each. The 2,378 PUMAs as a whole cover the entirety of the U.S. The weather data can be utilized alongside the large-scale energy analysis tools, ResStock and ComStock, developed by National Renewable Energy Laboratory, whose smallest resolution is at the PUMA scale.
The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and monthly records of basic meteorological variables from 1218 observing stations across the 48 contiguous United States. Daily data include observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations are U.S. Cooperative Observing Network stations located generally in rural locations, while some are National Weather Service First-Order stations that are often located in more urbanized environments. The USHCN has been developed over the years at the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) to assist in the detection of regional climate change. Furthermore, it has been widely used in analyzing U.S. climte. The period of record varies for each station. USHCN stations were chosen using a number of criteria including length of record, percent of missing data, number of station moves and other station changes that may affect data homogeneity, and resulting network spatial coverage. Collaboration between NCDC and CDIAC on the USHCN project dates to the 1980s (Quinlan et al. 1987). At that time, in response to the need for an accurate, unbiased, modern historical climate record for the United States, the Global Change Research Program of the U.S. Department of Energy and NCDC chose a network of 1219 stations in the contiguous United States that would become a key baseline data set for monitoring U.S. climate. This initial USHCN data set contained monthly data and was made available free of charge from CDIAC. Since then it has been comprehensively updated several times [e.g., Karl et al. (1990) and Easterling et al. (1996)]. The initial USHCN daily data set was made available through CDIAC via Hughes et al. (1992) and contained a 138-station subset of the USHCN. This product was updated by Easterling et al. (1999) and expanded to include 1062 stations. In 2009 the daily USHCN dataset was expanded to include all 1218 stations in the USHCN.
Dataset contains weather daily summaries from 1991-12-30 to 2016-01-02.
data
folder contains weather stations data split in batches as they were downloaded.
Each batch contains values from 10 stations and some of them could be void if no data were present for the associated stations.
Data source: ncei.noaa.gov
Original downloader: cavfiumella/us-weather-daily-summaries-1991-2016-downloader
Weather is among the most critical environmental variables influencing infrastructure, agriculture, energy, health, and climate strategy. Among all metrics, temperature and humidity form the baseline of accurate environmental modeling, building performance, and ESG reporting. Ambios provides high-quality Global Weather Data on real-time and historical temperature and humidity measurements. Sourced from over 3,000+ first-party sensors operating across 20 countries, our decentralized network ensures transparent, tamper-proof data with hyperlocal accuracy and high update frequency.
-Real-time temperature and humidity data updated every 15 minutes -Historical datasets with global coverage -100% first-party sensor data from a decentralized infrastructure -Compatible with ESG systems, climate models, and IoT platforms
Use cases include: -Climate risk and environmental impact assessments -Smart building energy efficiency and HVAC performance -Agricultural planning and weather-responsive irrigation -Supply chain risk modeling and operational forecasting -Urban microclimate monitoring and resilience planning -Scientific research, academic studies, and digital twins
Built on DePIN (Decentralized Physical Infrastructure Network) architecture, Ambios ensures complete traceability, verifiability, and scale. Our weather data delivers the transparency and precision that enterprises, governments, and researchers need for real-world decisions in real-time. Whether powering climate dashboards, optimizing building systems, or modeling regional weather impacts, Ambios Global Weather Data gives you trusted temperature and humidity insights globally and on demand.
Contains global weather station locations with data for monthly means from 1981 through 2010 for: Daily Mean Temperature °C Daily Maximum Temperature °C Daily Minimum Temperature °C Precipitation in mm Highest Daily Temperature °C Lowest Daily Temperature °C Additional monthly fields containing the equivalent values in °F and inches are available at the far right of the attribute table. GHCND stations were included if there were at least fifteen average daily values available in each month for all twelve months of the year, and for at least ten years between 1981 and 2010. 3,197 of the 7,480 stations did not collect or lacked sufficient precipitation data. These data are compiled from archived station values which have not undergone rigorous curation, and thus, there may be unexpected values, particularly in the daily extreme high and low fields. Esri is working to further curate this layer and will make updates as improvements are found. If your area of study is within the United States, we recommend using the U.S. Historical Climate - Monthly Averages for GHCN-D Stations 1981 - 2010 layer because the data in that service were compiled from web services produced by the Applied Climate Information System ( ACIS). ACIS staff curate the values for the U.S., including correcting erroneous values, reconciling data from stations that have been moved over their history, etc., thus the data in the U.S. service is of higher quality. Revision History: Initially Published: 6 Feb 2019 Updated: 12 Feb 2019 - Improved initial extraction algorithm to remove stations with extreme values. This included values higher than the highest temperature ever recorded on Earth, or those with mean values that were considerably different than adjacent neighboring stations.Updated: 18 Feb 2019 - Updated after finding an error in initial processing that excluded a 2,870 stations. Updated 16 Apr 2019 - We learned more precise coordinates for station locations were available from the Enhanced Master Station History Report (EMSHR) published by NOAA NCDC. With the publication of this layer the geometry and attributes for 635 of 7,452 stations now have more precise coordinates. The schema was updated to include the NCDC station identifier and elevation fields for feet and meters are also included. A large subset of the EMSHR metadata is available via EMSHR Stations Locations and Metadata 1738 to Present. Cite as:
Esri, 2019: World Historical Climate - Monthly Averages for GHCN-D Stations for 1981 - 2010. ArcGIS Online, Accessed April 2019. https://www.arcgis.com/home/item.html?id=ed59d3b4a8c44100914458dd722f054f Source Data: Station locations compiled from: Initially compiled using station locations from ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, R. Ray, R.S. Vose, B.E.Gleason, and T.G. Houston, 2012: Global Historical Climatology Network - Daily (GHCN-Daily), Version 3.24 Amended to use the most recent station locations from Russell S. Vose, Shelley McNeill, Kristy Thomas, Ethan Shepherd (2011): Enhanced Master Station History Report of March 2019. NOAA National Climatic Data Center. Access Date: April 10, 2019 doi:10.7289/V5NV9G8D. Station Monthly Means compiled from Daily Data: ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd_all.tar.gz Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, R. Ray, R.S. Vose, B.E.Gleason, and T.G. Houston, 2012: Global Historical Climatology Network - Daily (GHCN-Daily), Version 3.24
The U.S. Daily Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as well as U.S. territories, commonwealths, the Compact of Free Association nations, and one station in Canada. NOAA Climate Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations across the United States. As many NWS stations as possible are used, including those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the Climate Reference Network (CRN). The comprehensive U.S. Climate Normals dataset includes various derived products including daily air temperature normals (including maximum and minimum temperature normal, heating and cooling degree day normal, and others), precipitation normals (including snowfall and snow depth, percentiles, frequencies and other), and hourly normals (all normal derived from hourly data including temperature, dew point, heat index, wind chill, wind, cloudiness, heating and cooling degree hours, pressure normals). Users can access the data either by product or by station. Included in the dataset is extensive documentation to describe station metadata, filename descriptions, and methodology of producing the data. All data utilized in the computation of the 1981-2010 Climate Normals were taken from the ISD Lite (a subset of derived Integrated Surface Data), the Global Historical Climatology Network-Daily dataset, and standardized monthly temperature data (COOP). These source datasets (including intermediate datasets used in the computation of products) are also archived at the NOAA NCDC.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides weekly average temperature data for all U.S. counties from 2013 to 2023. Each row in the dataset represents a specific county, and the columns correspond to the weekly average temperatures over the ten-year period. The dataset is structured to facilitate time series analysis, climate trend studies, and machine learning applications related to environmental and climate change research.
Key Features: - County-Level Data: Temperature data is provided for each county in the United States, allowing for detailed, localized climate analysis. - Weekly Time Intervals: The data is aggregated on a weekly basis, offering a finer temporal resolution that captures seasonal and short-term temperature fluctuations.
10-Year Span: Covers a significant period from 2013 to 2023, enabling long-term trend analysis and comparison across different periods.
Temperature Units: All temperature values are presented in Kelvin (K).
Potential Uses:
Climate Research: Investigate climate change impacts at the county level, identify trends, and assess regional climate variability. Geospatial Analysis: Integrate with other spatial datasets for comprehensive environmental and geographical studies.
Machine Learning: Suitable for training models on temporal climate data, predictive analytics, and anomaly detection.
Public Policy and Planning: Useful for policymakers to study historical climate trends and support decision-making in areas such as agriculture, disaster management, and urban planning.
This dataset is ideal for researchers, data scientists, and analysts interested in exploring U.S. climate data at a granular level.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This metadata record describes the 30-year annual average of precipitation in millimeters (mm) and temperature (Celsius) during the period 1990–2019 for North America. The source data were produced by and acquired from DAYMET daily climate data (2020) and presented here as a series of two 1-kilometer resolution GeoTIFF files. An open source python code file used to process the data is also included.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Who among us doesn't talk a little about the weather now and then? Will it rain tomorrow and get so cold to shake your chin or will it make that cracking sun? Does global warming exist?
With this dataset, you can apply machine learning tools to predict the average temperature of Detroit city based on historical data collected over 5 years.
The given data set was produced from the Historical Hourly Weather Data [https://www.kaggle.com/selfishgene/historical-hourly-weather-data], which consists of about 5 years of hourly measurements of various weather attributes (eg. temperature, humidity, air pressure) from 30 US and Canadian cities.
From this rich database, a cutout was made by selecting only the city of Detroit (USA), highlighting only the temperature, converting it to Celsius degrees and keeping only one value for each date (corresponding to the average daytime temperature - from 9am to 5pm).
In addition, temperature values were artificially and gradually increased by a few Celsius degrees over the available period. This will simulate a small global warming (or is it local?)...
In summary, the available dataset contains the average daily temperatures (collected during the day), artificially increased by a certain value, for the city of Detroit from October 2012 to November 2017.
The purpose of this dataset is to apply forecasting models in order to predict the value of the artificially warmed average daily temperature of Detroit.
See graph in the following image: black dots refer to the actual data and the blue line represents the predictive model (including a confidence area).
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3089313%2Faf9614514242dfb6164a08c013bf6e35%2Fplot-ts2.png?generation=1567827710930876&alt=media" alt="">
This dataset wouldn't be possible without the previous work in Historical Hourly Weather Data.
What are the best forecasting models to address this particular problem? TBATS, ARIMA, Prophet? You tell me!
This dataset contains daily observations of maximum and minimum temperature, precipitation, snowfall, and snow depth for U.S. Historical Climatology Network observing stations in the contiguous 48 United States. These stations are part of the U.S. Cooperative network, but also have long periods of record.
This dataset contains a record of daily mean air temperature for each of the U.S. Great Lakes from January 1, 1897 to October 22, 2023. These temperatures were derived using the following method. Daily maximum and minimum air temperature data were obtained from the Global Historical Climatology Network-Daily (GHCNd, Menne, et al. 2012) and the Great Lakes Air Temperature/Degree Day Climatology, 1897-1983 (Assel et al. 1995). Daily air temperature was calculated by taking a simple average of daily maximum and minimum air temperature. Following Cohn et al. (2021), a total of 24 coastal locations along the Great Lakes were selected. These 24 locations had relatively consistent station data records since the 1890s. Each of the selected locations had multiple weather stations in their proximity covering the historical period from 1890s to 2023, representing the weather conditions around the location. For most of the locations, datasets from multiple stations in the proximity of each location were combined to create a continuous data record from the 1890s to 2023. When doing so, data consistency was verified by comparing the data during the period when station datasets overlap. This procedure resulted in almost continuous timeseries, except for a few locations that still had temporal gaps of one to several days. Any temporal data gap less than 10 days in the combined timeseries were filled based on the linear interpolation. This resulted in completely continuous timeseries for all the locations. Average daily air temperature was calculated from by simply making an average of timeseries data from corresponding locations around each lake. This resulted in daily air temperature records for all five Great Lakes (Lake Superior, Lake Huron, Lake Michigan, Lake Erie, and Lake Ontario).
Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.