66 datasets found
  1. Historical annual precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +6more
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2023). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  2. ERA5 post-processed daily statistics on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 post-processed daily statistics on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.4991cf48
    Explore at:
    gribAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1940 - Mar 20, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:

    The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)

    *The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.

  3. Complete ERA5 global atmospheric reanalysis

    • cds.climate.copernicus.eu
    netcdf
    Updated May 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2023). Complete ERA5 global atmospheric reanalysis [Dataset]. http://doi.org/10.24381/cds.143582cf
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    May 25, 2023
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1949
    Description

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.

  4. Daily temperature, 1909 - 2019

    • data.mfe.govt.nz
    • catalogue.data.govt.nz
    csv, dbf (dbase iii) +4
    Updated Oct 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry for the Environment (2020). Daily temperature, 1909 - 2019 [Dataset]. https://data.mfe.govt.nz/table/105056-daily-temperature-1909-2019/
    Explore at:
    mapinfo tab, csv, mapinfo mif, geodatabase, geopackage / sqlite, dbf (dbase iii)Available download formats
    Dataset updated
    Oct 14, 2020
    Dataset provided by
    Ministry For The Environmenthttps://environment.govt.nz/
    Authors
    Ministry for the Environment
    License

    https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/

    Description

    DATA SOURCE: National Institute for Water and Atmospheric Research (NIWA) [Technical report available at https://www.mfe.govt.nz/publications/environmental-reporting/ministry-environment-atmosphere-and-climate-report-2020-updated]

    Adapted by Ministry for the Environment and Statistics New Zealand to provide for environmental reporting transparency

    This lowest aggregation dataset, was used to develop three ‘Our Atmosphere and Climate’ indicators. See Statistics New Zealand indicator links for specific methodologies and state/trend datasets (see ‘Shiny App’ downloads). 1) Temperature (https://www.stats.govt.nz/ndicators/temperature) 2) First and last frost days (https://www.stats.govt.nz/ndicators/frost-and-warm-days) 3) Growing degree days (https://www.stats.govt.nz/ndicators/growing-degree-days)

    IMPORTANT INFORMATION Due to the size of this dataset (111 MB), a 32-bit version of Microsoft Excel will only display/download ~ 1 million rows. A DBMS, statistical or GIS application is needed to view the entire dataset.

    This dataset shows two measures of temperature change in New Zealand: New Zealand’s national temperature from NIWA’s ‘seven-station’ temperature series from 1909 to 2019, and temperature at 30 sites around the country from at least 1972 to 2019. For national temperature, we report daily average, minimum and maximum temperatures. We also present New Zealand national and global temperature anomalies.

    More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

  5. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    netcdf
    Updated Mar 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Mar 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Mar 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  6. U.S. Hourly Precipitation Data

    • catalog.data.gov
    • s.cnmilf.com
    • +5more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. Hourly Precipitation Data [Dataset]. https://catalog.data.gov/dataset/u-s-hourly-precipitation-data2
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Description

    Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.

  7. Climate Data: National Climate Centre, Bureau of Meteorology

    • researchdata.edu.au
    • data.gov.au
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Meteorology; Australian Institute of Marine Science (AIMS) (2024). Climate Data: National Climate Centre, Bureau of Meteorology [Dataset]. https://researchdata.edu.au/climate-data-national-bureau-meteorology/677917
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Authors
    Bureau of Meteorology; Australian Institute of Marine Science (AIMS)
    Area covered
    Description

    Three datasets containing climate data, compiled in April 2011, have been purchased from the Bureau of Meteorology. These datasets include observations from stations in all Australian States and Territories. Each dataset includes a file which gives details of the stations where observations were made and a file describing the data. AWS Hourly Data contains hourly records of precipitation, air temperature, wet bulb temperature, dew point temperature, relative humidity, vapour pressure, saturated vapour pressure, wind speed, wind direction, maximum wind gust, mean sea level pressure, station level pressure. Each record for each parameter is also flagged to indicate the quality of the value.Synoptic Data contains records of air temperature, dew point temperature, wet bulb temperature, relative humidity, wind speed, wind direction, mean sea level pressure, station level pressure, QNH pressure, vapour pressure and saturated vapour pressure. Each record for each parameter is also flagged to indicate the quality of the value.Daily Rainfall Data contains records precipitation in the 24 hours before 9 am, number of days of rain within the days of accumulation and the accumulated number of days over which the precipitation was measured. Each precipitation record is flagged to indicate the quality of the value.

  8. Open data

    • ecmwf.int
    application/x-grib
    Updated Nov 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2024). Open data [Dataset]. https://www.ecmwf.int/en/forecasts/datasets/open-data
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Nov 3, 2024
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    subject to appropriate attribution.

  9. Data from: Additional Daily Meteorological Data for Madison Wisconsin...

    • search.dataone.org
    • portal.edirepository.org
    • +1more
    Updated Jun 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lyle Anderson; Dale Robertson (2022). Additional Daily Meteorological Data for Madison Wisconsin (1884-2010) [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-ntl%2F282%2F2
    Explore at:
    Dataset updated
    Jun 8, 2022
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Lyle Anderson; Dale Robertson
    Time period covered
    Jan 1, 1884 - Apr 30, 2010
    Area covered
    Variables measured
    month, year4, daynum, rad_est, rel_hum, sky_adj, sky_raw, cldc_adj, cldc_raw, pressure, and 16 more
    Description

    These data are in addition to "Madison Wisconsin Daily Meteorological Data 1869-current." Additional variables added include: daily cloud cover, wind, solar radiation, vapor pressure, dew point temperature, total atmospheric pressure, and average relative humidity for Madison, Wisconsin. In addition, the adjustment factors which were applied on a given date to calculate the adjusted parameters in "Madison Wisconsin Daily Meteorological Data 1869-current" are also included in these data. Raw data, in English units, were assembled by Douglas Clark - Wisconsin State Climatologist. Data were converted to metric units and adjusted for temporal biases by Dale M. Robertson. For adjustments applied to various parameters see Robertson, 1989 Ph.D. Thesis UW-Madison. Adjusted data represent the BEST estimated daily data and may be raw data. Data collected at Washburn observatory, 8-1-1883 to 9-30-1904. Data collected at North Hall, 10-1-1904 to 12-31-1947 Data collected at Truax Field (Admin BLDG), 1-1-1948 to 12-31-1959. Data collected at Truax Field, center of field, 1-1-1960 to Present. Much of the data after 1990 were obtained in digital form from Ed Hopkins, UW-Meteorology. Data starting in 2002-2005 were obtained from Sullivan at http://www.weather.gov/climate/index.php?wfo=mkx%20 ,then go to CF6 and download monthly data to Madison_sullivan_conversion. Relative humidity data was obtained from 1986 to 1995 from CD's at the State Climatologist's Office. Since Robertson (1989) adjusted all historical data to that collected prior to 1989; no adjustments were applied to the recent data except for wind and estimated vapor pressure. Wind after January 1997, and only wind from the southwest after November 2007, was extended by Dale M. Robertson and Yi-Fang "Yvonne" Hsieh, see methods. Estimated vapor pressure after April 2002 was updated by Yvonne Hsieh, see methods.

  10. A

    Historical and future precipitation trends (Map Service)

    • data.amerigeoss.org
    • agdatacommons.nal.usda.gov
    • +7more
    html
    Updated Jul 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Historical and future precipitation trends (Map Service) [Dataset]. https://data.amerigeoss.org/ja/dataset/historical-and-future-precipitation-trends-map-service
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 26, 2019
    Dataset provided by
    United States[old]
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.

    Raster data are also available for download from RMRS site (https://www.fs.fed.us/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.fed.us/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  11. U.S. Daily Climate Normals (1981-2010)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +5more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. Daily Climate Normals (1981-2010) [Dataset]. https://catalog.data.gov/dataset/u-s-daily-climate-normals-1981-20101
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Daily Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as well as U.S. territories, commonwealths, the Compact of Free Association nations, and one station in Canada. NOAA Climate Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations across the United States. As many NWS stations as possible are used, including those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the Climate Reference Network (CRN). The comprehensive U.S. Climate Normals dataset includes various derived products including daily air temperature normals (including maximum and minimum temperature normal, heating and cooling degree day normal, and others), precipitation normals (including snowfall and snow depth, percentiles, frequencies and other), and hourly normals (all normal derived from hourly data including temperature, dew point, heat index, wind chill, wind, cloudiness, heating and cooling degree hours, pressure normals). Users can access the data either by product or by station. Included in the dataset is extensive documentation to describe station metadata, filename descriptions, and methodology of producing the data. All data utilized in the computation of the 1981-2010 Climate Normals were taken from the ISD Lite (a subset of derived Integrated Surface Data), the Global Historical Climatology Network-Daily dataset, and standardized monthly temperature data (COOP). These source datasets (including intermediate datasets used in the computation of products) are also archived at the NOAA NCDC.

  12. d

    BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to...

    • data.gov.au
    • researchdata.edu.au
    • +3more
    Updated Aug 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2023). BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012 [Dataset]. https://data.gov.au/data/dataset/7aaf0621-a0e5-4b01-9333-53ebcb1f1c14
    Explore at:
    Dataset updated
    Aug 9, 2023
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Abstract

    This dataset was supplied to the Bioregional Assessment Programme by a third party and is presented here as originally supplied. Metadata was not provided and has been compiled by the Bioregional Assessment Programme based on the known details at the time of acquisition.

    The BILO gridded data set contains daily fields of selected meteorological variables at 0.05 degrees resolution for the whole Australian continent, including Tasmania. It was obtained by CSIRO for use in the Australian Water Availability Project. In addition to daily data fields, some aggregates at monthly and annual intervals have been created.

    The variable is daily rainfall. Current data is updated daily by automatic download from the BoM website. Periodic updates (approximately every 6 months) of the dataset include new data and reprocessed data in immediately preceding years. These different revisions are distinguished by an element in the file names "bYYMM" which gives the last two digits of the year and the two digit month corresponding to the revision delivery date. These data represent the snapshot of current data as at 14/10/2013.

    This dataset has been provided to the BA Programme for use within the programme only. For copyright information go to http://www.bom.gov.au/other/copyright.shtml. Information on how to request a copy of data can be found at www.bom.gov.au/climate/data.

    Dataset History

    The data are a snapshot of the climate dataset known as BILO which represents the data as at 14/10/2013. CSIRO maintain a copy of the data as licenced though the Australian Water Availability Project. The BoM version is constantly updated and revised when new data are obtained, when errors in data are identified and when interpolation routines are revised. Therefore there may be difference in the values of some grid cells in the current BoM data compared to this snapshot held by CSIRO. The current BoM archive for these data are listed in the URLs below.

    Data provided by BoM on disk or directly downloaded from BoM website.

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/rarchives_awa

    .cgi?state=nat&period=daily&data_type=totals&format_type=grid

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/tarchives_awa

    .cgi?state=nat&period=daily&data_type=maxave&format_type=grid

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/tarchives_awa

    .cgi?state=nat&period=daily&data_type=minave&format_type=grid

    http://www.bom.gov.au/cgi-bin/silo/reg/brs/sarchives_awa.

    cgi?state=nat&period=daily&data_type=solarave&format_type=grid

    Processing Steps

    Data provided by BoM in Arc/Info ASCII raster format. Reformatted to binary flt and NetCDF.

    Dataset Citation

    Bureau of Meteorology (2013) BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012. Bioregional Assessment Source Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/7aaf0621-a0e5-4b01-9333-53ebcb1f1c14.

  13. U.S. Historical Climate - Monthly Averages for GHCN-D Stations for 1981 -...

    • climate-arcgis-content.hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    Updated Apr 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). U.S. Historical Climate - Monthly Averages for GHCN-D Stations for 1981 - 2010 [Dataset]. https://climate-arcgis-content.hub.arcgis.com/datasets/esri::u-s-historical-climate-monthly-averages-for-ghcn-d-stations-for-1981-2010
    Explore at:
    Dataset updated
    Apr 16, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    This point layer contains monthly summaries of daily temperatures (means, minimums, and maximums) and precipitation levels (sum, lowest, and highest) for the period January 1981 through December 2010 for weather stations in the Global Historical Climate Network Daily (GHCND). Data in this service were obtained from web services hosted by the Applied Climate Information System ( ACIS). ACIS staff curate the values for the U.S., including correcting erroneous values, reconciling data from stations that have been moved over their history, etc. The data were compiled at Esri from publicly available sources hosted and administered by NOAA. Because the ACIS data is updated and corrected on an ongoing basis, the date of collection for this layer was Jan 23, 2019. The following process was used to produce this dataset:Download the most current list of stations from ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-stations.txt. Import this into Microsoft Excel and save as CSV. In ArcGIS, import the CSV as a geodatabase table and use the XY Event layer tool to locate each point. Using a detailed U.S. boundary extract the points that fall within the 50 U.S. States, the District of Columbia, and Puerto Rico. Using Python with DA.UpdateCursor and urllib2 access the ACIS Web Services API to determine whether each station had at least 50 monthly values of temperature data for each station. Delete the other stations. Using Python add the necessary field names and acquire all monthly values for the remaining stations. Thus, there are stations that have some missing data. Using Python Add fields and convert the standard values to metric values so both would be present. Thus, there are four sets of monthly data in this dataset: Monthly means, mins, and maxes of daily temperatures - degrees Fahrenheit. Monthly mean of monthly sums of precipitation and the level of precipitation that was the minimum and maximum during the period 1981 to 2010 - mm. Temperatures in 3a. in degrees Celcius. Precipitation levels in 3b in Inches. After initially publishing these data in a different service, it was learned that more precise coordinates for station locations were available from the Enhanced Master Station History Report (EMSHR) published by NOAA NCDC. With the publication of this layer these most precise coordinates are used. A large subset of the EMSHR metadata is available via EMSHR Stations Locations and Metadata 1738 to Present. If your study area includes areas outside of the U.S., use the World Historical Climate - Monthly Averages for GHCN-D Stations 1981 - 2010 layer. The data in this layer come from the same source archive, however, they are not curated by the ACIS staff and may contain errors. Revision History: Initially Published: 23 Jan 2019 Updated 16 Apr 2019 - We learned more precise coordinates for station locations were available from the Enhanced Master Station History Report (EMSHR) published by NOAA NCDC. With the publication of this layer the geometry and attributes for 3,222 of 9,636 stations now have more precise coordinates. The schema was updated to include the NCDC station identifier and elevation fields for feet and meters are also included. A large subset of the EMSHR data is available via EMSHR Stations Locations and Metadata 1738 to Present. Cite as: Esri, 2019: U.S. Historical Climate - Monthly Averages for GHCN-D Stations for 1981 - 2010. ArcGIS Online, Accessed

  14. u

    Long-term Historical Rainfall Data for Australia

    • rda.ucar.edu
    • rda-web-prod.ucar.edu
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Long-term Historical Rainfall Data for Australia [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Description

    Australian Bureau of Meteorology assembled this dataset of 191 Australian rainfall stations for the purpose of climate change monitoring and assessment. These stations were selected because they are believed to ... be the highest quality and most reliable long-term rainfall stations in Australia. The longest period of record is August 1840 to December 1990, but the actual periods vary by individual station. Each data record in the dataset contains at least a monthly precipitation total, and most records also have daily data as well.

  15. Historical annual temperature (Alaska) (Image Service)

    • usfs.hub.arcgis.com
    • gimi9.com
    • +4more
    Updated Mar 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Historical annual temperature (Alaska) (Image Service) [Dataset]. https://usfs.hub.arcgis.com/datasets/9328f18126a94ae882237e0597613b13
    Explore at:
    Dataset updated
    Mar 5, 2019
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Bering Sea, Proliv Longa, Proliv Longa, Pacific Ocean, North Pacific Ocean
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  16. Climate indicators for Europe from 1940 to 2100 derived from reanalysis and...

    • cds.climate.copernicus.eu
    netcdf-4
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Climate indicators for Europe from 1940 to 2100 derived from reanalysis and climate projections [Dataset]. https://cds.climate.copernicus.eu/datasets/sis-ecde-climate-indicators
    Explore at:
    netcdf-4Available download formats
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 1940 - Dec 31, 2100
    Description

    This dataset provides a series of climate indices derived from reanalysis and model simulations data hosted on the Copernicus Climate Data Store (CDS). These indicators describe how climate variability and change of essential climate variables can impact sectors such as health, agriculture, forestry, energy, tourism, or water and coastal management. Those indices are relevant for adaptation planning at the European and national level and their development was driven by the European Environment Agency (EEA) to address informational needs of climate change adaptation national initiatives across the EU and partner countries as expressed by user requirements and stakeholder consultation. The indices cover the hazard categories introduced by the IPCC and the European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC-CCA). They are also made available interactively through CDS Toolbox public visualisation apps on the European Climate Data Explorer hosted on EEA’s Climate-adapt site. The indices are either downloaded from the CDS where available, or calculated through a specific CDS Toolbox workflow. In this way both the calculations and the resulting data are fully traceable. As they come from different datasets the underlying climate data differ in their technical specification (type and number of climate and impact models involved, bias-corrected or not, periods covered etc.). An effort was made in the dataset selection to limit the heterogeneity of the underlying dataset as ideally the indices should come from the same dataset with identical specifications. The indices related to temperature, precipitation and wind (20 out of 30) were calculated from atmospheric variables in the same datasets: 'Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections', and 'ERA5 hourly data on single levels from 1940 to present'. The other indices are directly available from CDS datasets generated by specific theme projects. More information about this dataset can be found in the documentation. The underlying datasets hosted on the CDS are:

    ERA5 hourly data on single levels from 1940 to present - used to calculate most of the temperature, precipitation and wind speed indicators as it provides the historical and observation based baseline used to monitor the indicators. Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections - used to calculate most of the temperature, precipitation and wind speed indicators as it provides bias-corrected sub-daily data. It is used for all the indicators except those specified in the following datasets below. Fire danger indicators for Europe from 1970 to 2098 derived from climate projections - provides the high fire danger days and fire weather indicators. Hydrology-related climate impact indicators from 1970 to 2100 derived from bias adjusted European climate projections - provides the river flood, river discharge, aridity actual, and mean soil moisture indicators. Mountain tourism meteorological and snow indicators for Europe from 1950 to 2100 derived from reanalysis and climate projections - provides the snowfall amount index. Water level change indicators for the European coast from 1977 to 2100 derived from climate projections - provides the relative sea level rise and extreme sea level indicators.

    This dataset was produced on behalf of the Copernicus Climate Change Service.

  17. r

    Soil Sensor Readings - Historical data (2022)

    • researchdata.edu.au
    • data.melbourne.vic.gov.au
    Updated Mar 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.vic.gov.au (2023). Soil Sensor Readings - Historical data (2022) [Dataset]. https://researchdata.edu.au/soil-sensor-readings-historical-2022/2304822
    Explore at:
    Dataset updated
    Mar 23, 2023
    Dataset provided by
    data.vic.gov.au
    Description

    This dataset contains historical readings for soil sensors within parks across the City of Melbourne, for calendar year 2022 (current year data data is here). The sensors take a variety of readings such as salinity, temperature and moisture. The units and readings are included within the data. This dataset can be joined to the soil sensor locations dataset using the site id column. This dataset contains a large number of records, to download only a particular sensor's readings see our attached guide on how to filter data.

    Different readings taken (based on unit column):
    - %VWC: Volumetric water content is a numerical measure of soil moisture. It is simply the ratio of water volume to soil volume.
    - ºC: Temperature in degrees celsius.
    - µS/cm: Salinity is the measure of the concentration of dissolved (soluble) salts in water from all sources. (microseimens per centimetre)

    Note this dataset may not contain a reading for every sensor for every hour as the sensor devices might not have a reading for each value. There may be situations where no readings are reported for all sensors or only some readings are reported at a particular site.

  18. Atmospheric Model high resolution 15-day forecast

    • ecmwf.int
    application/x-grib
    Updated Sep 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2016). Atmospheric Model high resolution 15-day forecast [Dataset]. https://www.ecmwf.int/en/forecasts/datasets/set-i
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Sep 20, 2016
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    https://www.ecmwf.int/sites/default/files/ECMWF_Standard_Licence.pdfhttps://www.ecmwf.int/sites/default/files/ECMWF_Standard_Licence.pdf

    Description

    Single prediction that uses

    observations
    prior information about the Earth-system
    ECMWF's highest-resolution model
    

    HRES Direct model output Products offers "High Frequency products"

    4 forecast runs per day (00/06/12/18) (see dissemination schedule for details)
    Hourly steps to step 144 for all four runs
    

    Not all post-processed Products are available at 06/18 runs or in hourly steps.

  19. u

    Data from: ICAR Downscaled Climate Data over the Western United States

    • rda.ucar.edu
    • oidc.rda.ucar.edu
    • +1more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ICAR Downscaled Climate Data over the Western United States [Dataset]. https://rda.ucar.edu/lookfordata/datasets/?nb=y&b=topic&v=Atmosphere
    Explore at:
    Description

    This dataset contains quasi-dynamically downscaled climate data from 8 global climate models from the CMIP5 archive. The data were downscaled using the Intermediate Complexity Atmospheric Research (ICAR Gutmann et al., ... 2016) model after bias correcting the GCM three dimensional atmospheric data to match the ERA-interim reanalysis climatology (Dee et al., 2011). ICAR was configured with the Thompson microphysics, a simple PBL parameterization based on YSU, the RRTMG longwave radiation and an empirical shortwave radiation scheme, the Noah-MP land surface model, the WRF-Lake model, the BMJ cumulus parameterization, and used linear mountain wave theory for upper level wind structures combined with an iterative scheme to remove vertical motion at the model top. The output from ICAR was adjusted to match the climatological statistics of the Livneh et al. (2015) observational dataset.

  20. Data from: Tornado Tracks

    • gis-fema.hub.arcgis.com
    • opendata.rcmrd.org
    • +7more
    Updated Feb 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2020). Tornado Tracks [Dataset]. https://gis-fema.hub.arcgis.com/datasets/fedmaps::tornado-tracks-1/about
    Explore at:
    Dataset updated
    Feb 7, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    Area covered
    Description

    Tornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2022. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2022Data source: Storm Prediction CenterData modifications: Added fields Calculated Month and DateFor more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2023). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
Organization logo

Historical annual precipitation (CONUS) (Image Service)

Explore at:
Dataset updated
Jun 21, 2023
Dataset provided by
U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
Description

The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

Search
Clear search
Close search
Google apps
Main menu