These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.
Clean, reliable data – Weather and more!
We’ve spent millions of dollars over the last 25+ years working with global weather data space. Raw data, from a multitude of government sources, private weather networks and Earth Observation platforms, is assimilated into proprietary numerical weather prediction (NWP) models.
This Model output, analyzed and cleansed by the latest AI technologies gives Weather Data AI a clean, proprietary, high resolution global gridded weather database, available to you for whatever purpose you may need.
This dataset contains Raleigh Durham International Airport weather data pulled from the NOAA web service described at Climate Data Online: Web Services Documentation. We have pulled this data and converted it to commonly used units. This dataset is an archive - it is not being updated.
WeatherDataAI Single-Point is a simple yet powerful tool for accessing global historical weather data with just a few clicks. Users select the weather variable(s) they need (like temperature, precipitation, etc.), choose the years of interest, and click a location on the interactive map. The platform automatically fetches the data, creates a custom CSV file, and provides a download link while also emailing the file directly to the user. No technical skills required — it’s built for researchers, businesses, and curious minds who need fast, accurate weather insights without coding or complex interfaces.
Weather data from two weather stations at Stuttgart Rice Research and Extension center are archived. Current air temperature, relative humidity, wind speed, solar radiation and soil temperature data are provided by station and are displayed and archived either hourly or daily. Historical weather data goes back to 2008. Resources in this dataset:Resource Title: Weather Station Data. File Name: Web Page, url: https://www.ars.usda.gov/southeast-area/stuttgart-ar/dale-bumpers-national-rice-research-center/docs/weather-station-data/
Hourly geographically aggregated weather data for Europe. This data package contains radiation and temperature data, at hourly resolution, for Europe, aggregated by Renewables.ninja from the NASA MERRA-2 reanalysis. It covers the European countries using a population-weighted mean across all MERRA-2 grid cells within the given country.
Note that 2013 and 2014 datasets are available for download in the attachment tab below.The journal article describing GHCN-Daily is: Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily Database. Journal of Atmospheric and Oceanic Technology, 29, 897-910, doi:10.1175/JTECH-D-11-00103.1.Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, R. Ray, R.S. Vose, B.E.Gleason, and T.G. Houston, 2012: Global Historical Climatology Network - Daily (GHCN-Daily), Version 3. [indicate subset used following decimal, e.g. Version 3.12]. NOAA National Climatic Data Center. http://doi.org/10.7289/V5D21VHZ
Historical weather data is essential for understanding environmental trends, assessing climate risk, and building predictive models for infrastructure, agriculture, and sustainability initiatives. Among all variables, temperature and humidity serve as core indicators of environmental change and operational risk.
Ambios offers high-resolution Historical Weather Data focused on temperature and humidity, sourced from over 3,000+ first-party sensors across 20 countries. This dataset provides hyperlocal, verified insights for data-driven decision-making across industries.
-Historical weather records for temperature and humidity -First-party sensor data from a decentralized network -Global coverage across 20 countries and diverse climate zones -Time-stamped, high-frequency measurements with environmental context -Designed to support ESG disclosures, research, risk modeling, and infrastructure planning
Use cases include:
-Long-term climate trend analysis and model validation -Historical baselining for ESG and sustainability frameworks -Resilience planning for heatwaves, humidity spikes, and changing climate conditions -Agricultural research and water management strategy -Infrastructure and energy load forecasting -Academic and scientific studies on regional weather patterns
Backed by Ambios’ decentralized physical infrastructure (DePIN), the data is reliable, traceable, and scalable—empowering organizations to make informed decisions grounded in historical environmental intelligence.
Whether you're building ESG models, planning smart infrastructure, or conducting climate research, Ambios Historical Weather Data offers the precision and credibility needed for long-term environmental insight.
Saudi Arabia hourly climate integrated surface data with the below data observations, WindSky conditionVisibilityAir temperatureDewSea level pressureNote: The dataset will contain the last 5 years hourly data, however, check the attachments section in this dataset if you need historical data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains historical weather observations from various global locations, with its data provided at two temporal resolutions: daily and hourly. It includes core meteorological variables such as temperature, precipitation, wind, humidity, and atmospheric pressure, along with geospatial and temporal metadata for each observation. The dataset covers diverse geographic regions, including cities all arround the world, and supports both short-term event analysis and long-term climate trend exploration.
World Weather Records (WWR) is an archived publication and digital data set. WWR is meteorological data from locations around the world. Through most of its history, WWR has been a publication, first published in 1927. Data includes monthly mean values of pressure, temperature, precipitation, and where available, station metadata notes documenting observation practices and station configurations. In recent years, data were supplied by National Meteorological Services of various countries, many of which became members of the World Meteorological Organization (WMO). The First Issue included data from earliest records available at that time up to 1920. Data have been collected for periods 1921-30 (2nd Series), 1931-40 (3rd Series), 1941-50 (4th Series), 1951-60 (5th Series), 1961-70 (6th Series), 1971-80 (7th Series), 1981-90 (8th Series), 1991-2000 (9th Series), and 2001-2011 (10th Series). The most recent Series 11 continues, insofar as possible, the record of monthly mean values of station pressure, sea-level pressure, temperature, and monthly total precipitation for stations listed in previous volumes. In addition to these parameters, mean monthly maximum and minimum temperatures have been collected for many stations and are archived in digital files by NCEI. New stations have also been included. In contrast to previous series, the 11th Series is available for the partial decade, so as to limit waiting period for new records. It begins in 2010 and is updated yearly, extending into the entire decade.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is an hourly future weather dataset for energy modeling applications. The dataset is primarily based on the output of a regional climate model (RCM), i.e., the Weather Research and Forecasting (WRF) model version 3.3.1. The WRF simulations are driven by the output of a general circulation model (GCM), i.e., the Community Climate System Model version 4 (CCSM4).
This dataset is in the EPW format, which can be read or translated by more than 25 building energy modeling programs (e.g., EnergyPlus, ESP-r, and IESVE), energy system modeling programs (e.g., System Advisor Model (SAM)), indoor air quality analysis programs (e.g., CONTAM), and hygrothermal analysis programs (e.g., WUFI). It contains 13 weather variables, which are the Dry-Bulb Temperature, Dew Point Temperature, Relative Humidity, Atmospheric Pressure, Horizontal Infrared Radiation Intensity from Sky, Global Horizontal Irradiation, Direct Normal Irradiation, Diffuse Horizontal Irradiation, Wind Speed, Wind Direction, Sky Cover, Albedo, and Liquid Precipitation Depth.
This dataset provides future weather data under two emissions scenarios - RCP4.5 and RCP8.5 - across two 10-year periods (2045-2054 and 2085-2094). It also includes simulated historical weather data for 1995-2004 to serve as the baseline for climate impact assessments. We strongly recommend using this built-in baseline rather than external sources (e.g., TMY3) for two key reasons: (1) it shares the same model grid as the future projections, thereby minimizing geographic-averaging bias, and (2) both historical and future datasets were generated by the same RCM, so their differences yield anomalies largely free of residual model bias.
This dataset offers a spatial resolution of 12 km by 12 km with extensive coverage across most of North America. Due to the enormous size of the entire dataset, in the first stage of its distribution, we provide weather data for the centroid of each Public Use Microdata Area (PUMA), excluding Hawaii. PUMAs are non-overlapping, statistical geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than 100,000 people each. The 2,378 PUMAs as a whole cover the entirety of the U.S. The weather data can be utilized alongside the large-scale energy analysis tools, ResStock and ComStock, developed by National Renewable Energy Laboratory, whose smallest resolution is at the PUMA scale.
The authors observed an anomalous warming signal over the Great Plains in the end-of-century (2085 - 2094) RCP4.5 time slice. This anomaly is absent in the mid-century slice (2045 - 2054) under RCP4.5 and in both the mid- (2045 - 2054) and end-of-century (2085 - 2094) slices under RCP8.5. Consequently, we recommend that users exercise particular caution when using the RCP4.5 2085-2094 data, especially for analyses involving the Great Plains region.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
If you're looking for weather datasets, there are several reputable sources where you can access comprehensive weather data for various applications, including research, machine learning, and more. Here are some popular options:
National Centers for Environmental Information (NCEI):
OpenWeatherMap:
Weather Underground:
European Centre for Medium-Range Weather Forecasts (ECMWF):
The Weather Company (IBM):
NASA Earth Observing System Data and Information System (EOSDIS):
Global Surface Summary of the Day (GSOD):
Climate Data Online (CDO):
Meteostat:
🇩🇪 독일 English This data set includes historical weather data for the station of the DWD (Station number: 02712) at Silvanerweg 6 in Constance over a longer period of time. On July 25, 2017, an amendment to the German Weather Service Act ("DWD Act") came into force. The DWD is legally mandated to provide its weather and climate information largely free of charge. Currently, many geodata such as model predictions, radar data, current measurement and observation data as well as a large number of climate data are available on the Open Data Server https://opendata.dwd.de . The climate data is provided under https://opendata.dwd.de/climate_environment/CDC. The freely accessible data may continue to be used without restrictions in accordance with the "Ordinance on the Determination of the Terms of Use for the Provision of Federal Geodata (GeoNutzV)" with the addition of a source note (https://gdz.bkg.bund.de). With regard to the design of the source notes, the German Meteorological Service (DWD) (pursuant to § 7 DWD Act, § 3 GeoNutzV) requests the following information: The obligation to include provided source notes applies to the unchanged use of spatial data and other services of the DWD. References must also be included when extracts are created or the data format is changed. An illustration of the DWD logo is sufficient as a source reference within the meaning of the GeoNutzV. For further changes, edits, new designs or other modifications, the DWD expects at least one mention of the DWD in central source directories or in the imprint. Indications of change according to GeoNutzV can be, for example: "Data base: German Weather Service, raster data graphically reproduced", "Data base: German weather service, individual values averaged" or "Data base: German weather service, own elements added". In the case of a use that does not meet the intended purpose of the performance of the DWD, enclosed source notes must be deleted. This applies in particular to weather warnings if it is not ensured that they are made available to all users at all times completely and immediately. Source: German Weather Service (DWD)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Original dataset can be found here: https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00861/html Menne, Matthew J., Imke Durre, Bryant Korzeniewski, Shelley McNeill, Kristy Thomas, Xungang Yin, Steven Anthony, Ron Ray, Russell S. Vose, Byron E.Gleason, and Tamara G. Houston (2012): Global Historical Climatology Network - Daily (GHCN-Daily), Version 3. 1988-2008. NOAA National Climatic Data Center. doi:10.7289/V5D21VHZ 2023. Matthew J. Menne, Imke Durre, Russell S. Vose, Byron E. Gleason, and Tamara G. Houston, 2012: An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Oceanic Technol., 29, 897-910. doi:10.1175/JTECH-D-11-00103.1.
The backbone of CustomWeather's forecasting arm is our proven, high-resolution model, the CW100. The CW100 Model is based on physics, not statistics or airport observations. As a result, it can achieve significantly better accuracy than statistical models, especially for non-airport locations. While other forecast models are designed to forecast the entire atmosphere, the CW100 greatly reduces computational requirements by focusing entirely on conditions near the ground. This reduction of computations allows it to resolve additional physical processes near the ground that are not resolved by other models. It also allows the CW100 to operate at a much higher resolution, typically 100x finer than standard models and other gridded forecasts.
Detailed Forecasts:
Features a detailed 48-hour outlook broken into four segments per day: morning, afternoon, evening, and overnight. Each segment provides condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, 6-hr forecasted precip amounts, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.
Extended Forecasts Days 1-15:
Features condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.
Hour-by-Hour Forecasts: Features Hour-by-Hour forecasts. The product is available as 12 hour, 48 hour and 168 hour blocks. Each hourly forecast includes weather descriptions, wind conditions, temperature, dew point, humidity, visibility, rainfall totals, snowfall totals, and precipitation probability. Available for over 85,000 forecast points globally. Updated four times per day.
Historical Longer Term Forecasts: Includes historical hourly and/or daily forecast data from 2009 until present date. Data will include condition descriptions, high/low temperatures, wind speed and direction, dew point, humidity, comfort level, UV index, probability of precipitation, rainfall and snowfall amounts. Available for over 85,000 forecast points globally. The information is updated four times per day.
Below are available time periods per each type of forecast from the GFS model and from CustomWeather's proprietary CW100 model:
GFS: 7-day hourly forecasts from August 2nd 2009; 48-hour to 5-day detailed forecasts from August 4th 2009; 15-day forecasts from October 9th 2008.
CW100: 7-day hourly forecasts from November 27, 2012; 48-hour detailed forecasts from November 12, 2011; 7-day forecasts from December 6, 2010, 15-day forecasts from August 6, 2012. CW100 is CustomWeather's proprietary model.
MOS: (Model Output Statistics) for any global location using archive of model and observation data. 0.25 degree resolution. 15-day hourly forecasts from January 1, 2017; 15-day forecasts from April 19, 2017.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About San Francisco San Francisco is a vibrant and dynamic city located on the west coast of the United States, in the state of California. Known for its hilly terrain, diverse neighborhoods, and iconic landmarks such as the Golden Gate Bridge and Alcatraz Island, San Francisco is a hub of culture, creativity, and innovation. The city is renowned for its world-class restaurants, thriving arts scene, and historic architecture, and is home to many tech companies and startups. With its mild climate, stunning views, and rich history, San Francisco is a must-visit destination for travelers from around the world.
About Dataset This dataset contains daily weather observations for San Francisco, USA from January 1, 1993 to January 1, 2023. The data is collected from Meteostat. The dataset contains 10 columns with 10958 rows.
The Alaska Climate Center (ACC) houses the historical weather records for the state of Alaska (mostly official U.S. Government data). These are in the form of raw handwritten data, summarized coded forms, surface and upper air weather map analyses, and selected digital data. They are stored in map sets, report sets, catalogs/indexes, individual maps, bibliographies, file folders, micrographics, and microfiche. It is not a single data base, but rather an extensive repository of historical records from communities and areas throughout the state. These individual data records and reports number in the thousands. The Center publishes a series of Alaska climate technical reports and Arctic climate atlases. In addition, it serves as a repository for publications on Arctic climate-related matters.
Ambee Weather API gives access to real-time & forecasted local weather updates for temperature, pressure, humidity, wind, cloud coverage, visibility, and dew point of any location in the world by latitude and longitude
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Historic weather database creation project using English national chronicle records (Holinshed, Stow), as well as local chronicles, letters, diaries, and pamphlets documenting extreme weather and meteorological events (such as earthquakes and comets) between 1500-1700. These years were part of what is known as the Little Ice Age, a period of global cooling. Written accounts—both formal and informal—are crucial to documenting weather and climatic patterns prior to the development of weather recording technologies. We are also in the process of adding ordinary or "middling" weather records, to provide further context for reading weather patterns and anomalies.
These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.