Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Price Reduced Count in the United States (PRIREDCOUUS) from Jul 2016 to Oct 2025 about reduced count, price, and USA.
Facebook
TwitterHouse prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.
Facebook
TwitterThe average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US Existing Home Median Sales Price. from United States. Source: National Association of Realtors. Track ec…
Facebook
TwitterThe U.S. housing market continues to evolve, with the median price for existing homes forecast to fall to ******* U.S. dollars by 2027. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately ****** U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding ****** U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with a modest price increase of *** percent in 2024. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in 2025, with Rhode Island and West Virginia leading the packby home appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in China remained unchanged at -2.20 percent in October. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThe U.S. housing market has slowed, after ** consecutive years of rising home prices. In 2021, house prices surged by an unprecedented ** percent, marking the highest increase on record. However, the market has since cooled, with the Freddie Mac House Price Index showing more modest growth between 2022 and 2024. In 2024, home prices increased by *** percent. That was lower than the long-term average of *** percent since 1990. Impact of mortgage rates on homebuying The recent cooling in the housing market can be partly attributed to rising mortgage rates. After reaching a record low of **** percent in 2021, the average annual rate on a 30-year fixed-rate mortgage more than doubled in 2023. This significant increase has made homeownership less affordable for many potential buyers, contributing to a substantial decline in home sales. Despite these challenges, forecasts suggest a potential recovery in the coming years. How much does it cost to buy a house in the U.S.? In 2023, the median sales price of an existing single-family home reached a record high of over ******* U.S. dollars. Newly built homes were even pricier, despite a slight decline in the median sales price in 2023. Naturally, home prices continue to vary significantly across the country, with West Virginia being the most affordable state for homebuyers.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterAll the following text is copied directly from the original dataset used: https://www.kaggle.com/datasets/fedesoriano/the-boston-houseprice-data
The only difference is that features 12 and 13 have been removed for simplicity. See original link for a version with those features in place.
Gender Pay Gap Dataset: https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset
California Housing Prices Data (5 new features!): https://www.kaggle.com/fedesoriano/california-housing-prices-data-extra-features
Company Bankruptcy Prediction: https://www.kaggle.com/fedesoriano/company-bankruptcy-prediction
Spanish Wine Quality Dataset: https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978.
Input features in order:
1) CRIM: per capita crime rate by town
2) ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
3) INDUS: proportion of non-retail business acres per town
4) CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)
5) NOX: nitric oxides concentration (parts per 10 million) [parts/10M]
6) RM: average number of rooms per dwelling
7) AGE: proportion of owner-occupied units built prior to 1940
8) DIS: weighted distances to five Boston employment centres
9) RAD: index of accessibility to radial highways
10) TAX: full-value property-tax rate per $10,000 [$/10k]
11) PTRATIO: pupil-teacher ratio by town
[Original features 12 and 13 have been deliberately removed from this version of the dataset]
Output variable:
1) MEDV: Median value of owner-occupied homes in $1000's [k$]
StatLib - Carnegie Mellon University
Harrison, David & Rubinfeld, Daniel. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management. 5. 81-102. 10.1016/0095-0696(78)90006-2. https://www.researchgate.net/profile/Daniel-Rubinfeld/publication/4974606_Hedonic_housing_prices_and_the_demand_for_clean_air/links/5c38ce85458515a4c71e3a64/Hedonic-housing-prices-and-the-demand-for-clean-air.pdf
Belsley, David A. & Kuh, Edwin. & Welsch, Roy E. (1980). Regression diagnostics: identifying influential data and sources of collinearity. New York: Wiley https://www.wiley.com/en-us/Regression+Diagnostics%3A+Identifying+Influential+Data+and+Sources+of+Collinearity-p-9780471691174
Facebook
TwitterThis dataset uses data provided from Washington State’s Housing Market, a publication of the Washington Center for Real Estate Research (WCRER) at the University of Washington.
Median sales prices represent that price at which half the sales in a county (or the state) took place at higher prices, and half at lower prices. Since WCRER does not receive sales data on individual transactions (only aggregated statistics), the median is determined by the proportion of sales in a given range of prices required to reach the midway point in the distribution. While average prices are not reported, they tend to be 15-20 percent above the median.
Movements in sales prices should not be interpreted as appreciation rates. Prices are influenced by changes in cost and changes in the characteristics of homes actually sold. The table on prices by number of bedrooms provides a better measure of appreciation of types of homes than the overall median, but it is still subject to composition issues (such as square footage of home, quality of finishes and size of lot, among others).
There is a degree of seasonal variation in reported selling prices. Prices tend to hit a seasonal peak in summer, then decline through the winter before turning upward again, but home sales prices are not seasonally adjusted. Users are encouraged to limit price comparisons to the same time period in previous years.
Facebook
TwitterThis dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.
Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.
Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.
Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.
Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.
The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.
It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.
This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of new housing price indexes in Canada. The data is sourced from a reliable statistical survey, offering a detailed breakdown of housing prices across different components such as total house and land, house only, and land only. The dataset is structured to include key metrics such as geographical location, price index classification, and specific price values, providing a robust foundation for analyzing housing price dynamics within the country.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterThe number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Home Sales in the United States increased to 800 Thousand units in August from 664 Thousand units in July of 2025. This dataset provides the latest reported value for - United States New Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Price Reduced Count in the United States (PRIREDCOUUS) from Jul 2016 to Oct 2025 about reduced count, price, and USA.