The U.S. housing market continues to evolve, with the median home price forecast to reach ******* U.S. dollars by the second quarter of 2026. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices, but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately ****** U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding ****** U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with more modest price increases of *** percent in 2022 and *** percent in 2023. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in the fourth quarter of 2023, with Rhode Island and Vermont leading the pack at over ** percent appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.
The number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States decreased to 422400 USD in July from 432700 USD in June of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United States decreased to 434.40 points in May from 435.10 points in April of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
The average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Amsterdam House Price Prediction’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/thomasnibb/amsterdam-house-price-prediction on 28 January 2022.
--- Dataset description provided by original source is as follows ---
If you are like me, you might get overwhelmed when having to make big decisions such as buying a house. In such cases, I always like to go for a data driven approach, that will help me find an optimum solution. This involves two steps. First, we need to gather as much data as we can. Second, we need to define a metric for success.
Gathering housing prices requires some effort. A caveat is that the asking prices are not the prices to which the houses were actually sold. Defining a metric for success is somewhat subjective. I consider a house to be a good option if the house price is cheap compared to other listings in the area.
The housing prices have been obtained from Pararius.nl as a snapshot in August 2021. The original data provided features such as price, floor area and the number of rooms. The data has been further enhanced by utilising the Mapbox API to obtain the coordinates of each listing.
Thanks to Pararius
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Home Sales in the United States increased to 627 Thousand units in June from 623 Thousand units in May of 2025. This dataset provides the latest reported value for - United States New Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Existing Home Sales in the United States increased to 4010 Thousand in July from 3930 Thousand in June of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Jiffs house price prediction dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/elakiricoder/jiffs-house-price-prediction-dataset on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I have previously shared a classification based dataset to classify the gender which is liked by those who are new to machine learning as it give a pretty good accuracy, which encouraged me to create a regression dataset to predict continues values. I have tried many real world datasets for regression problems which are predicting with lower accuracy and high error rate. As a beginner, I have struggled and worried why and how the dataset performs poorly. This is another main reason why I created this dataset. Although this is a made up dataset, I have considered all the features when deciding the price of the property. If you are a beginner, you would love to try this as the results are stunning..
Since this is a populated data, I will straightaway explain the features and the label. FEATURES 1. land_size_sqm - This the total size of the land in square meters. 2. house_size_sqm - This is the area in which house is located within the land. This is measured in square meters. 3. no_of_rooms - This indicates the number of rooms available in the house. 4. no_of_bathrooms - This shows the number of total bathrooms made in the house. 5. large_living_room - This indicates whether the house includes a larger living room or not. The assumption is that all the houses contain a living room. This feature attempts to classify whether it's large or small where '1' means large and '0' means small. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 6. parking_space - This indicates whether there is a parking space or not. '1' represents the parking available while '0' represents no parking space available. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 7. front_garden - This shows whether there is a garden available in front of the house. '1' means the garden available and '0' means no garden available. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 8. swimming_pool - This shows the availability of the swimming pool at the house. 1 represents the availability of the swimming pool while 0 represents the non availability of the same. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 9. distance_to_school_km - This shows the distance from the house to the nearest school in Kilometers. 10. wall_fence - This shows whether there is a wall fence or not. '1' mean there is wall fence and '0' means no wall fence. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 11. **house_age_or_renovated **- This is either the age of the house in years or the period from the date of renovation. 12. water_front - this indicates whether the house is located in front of the water or not. 1 means waterfront and 0 means its not located near the water. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 13. distance_to_supermarket_km - what is the distance to the nearest supermarket in kilometers.
LABEL property_value - This is the price of the property
Following features are only available in the "house price dataset original v2 cleaned" and "house price dataset original v2 with categorical features" data only. 14. crime_rate - its in float and falls between 0 and 7. lesser the better 15. room_size - As the name suggests, it explains the size of the room. 0 is being 'small', 1 is being 'medium', 2 is 'large' and 3 is being 'Extra large'. However in the categorical dataset, these values are categorical and self explanatory.
I spent around 3 hours creating this dataset. Enjoy..
Share your notebooks to see which algorithm predicts the house price precisely.
--- Original source retains full ownership of the source dataset ---
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
After a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Sweden decreased to 936 points in the first quarter of 2025 from 937 points in the fourth quarter of 2024. This dataset provides - Sweden House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in China decreased by 2.80 percent in July from -3.20 percent in June of 2025. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Delhi House Price Prediction’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/neelkamal692/delhi-house-price-prediction on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This is not a comprehensive list, some of the attributes i left intentionally and some just couldn't extract. Dataset consists of 12 columns and 1259 rows. 6 of the features are numerical valued and rest are categorical. code for extracting Data is available at my Github account.
The Data has been extracted from MagicBricks (a website, provides common platform to property buyer and seller ).
I have done property price prediction on Boston Dataset, so i was wondering, if i can do it for Delhi properties too.
--- Original source retains full ownership of the source dataset ---
The number of home sales in the United States peaked in 2021 at almost ************* after steadily rising since 2018. Nevertheless, the market contracted in the following year, with transaction volumes falling to ***********. Home sales remained muted in 2024, with a mild increase expected in 2025 and 2026. A major factor driving this trend is the unprecedented increase in mortgage interest rates due to high inflation. How have U.S. home prices developed over time? The average sales price of new homes has also been rising since 2011. Buyer confidence seems to have recovered after the property crash, which has increased demand for homes and also the prices sellers are demanding for homes. At the same time, the affordability of U.S. homes has decreased. Both the number of existing and newly built homes sold has declined since the housing market boom during the coronavirus pandemic. Challenges in housing supply The number of housing units in the U.S. rose steadily between 1975 and 2005 but has remained fairly stable since then. Construction increased notably in the 1990s and early 2000s, with the number of construction starts steadily rising, before plummeting amid the infamous housing market crash. Housing starts slowly started to pick up in 2011, mirroring the economic recovery. In 2022, the supply of newly built homes plummeted again, as supply chain challenges following the COVID-19 pandemic and tariffs on essential construction materials such as steel and lumber led to prices soaring.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
The U.S. housing market has slowed, after ** consecutive years of rising home prices. In 2021, house prices surged by an unprecedented ** percent, marking the highest increase on record. However, the market has since cooled, with the Freddie Mac House Price Index showing more modest growth between 2022 and 2024. In 2024, home prices increased by *** percent. That was lower than the long-term average of *** percent since 1990. Impact of mortgage rates on homebuying The recent cooling in the housing market can be partly attributed to rising mortgage rates. After reaching a record low of **** percent in 2021, the average annual rate on a 30-year fixed-rate mortgage more than doubled in 2023. This significant increase has made homeownership less affordable for many potential buyers, contributing to a substantial decline in home sales. Despite these challenges, forecasts suggest a potential recovery in the coming years. How much does it cost to buy a house in the U.S.? In 2023, the median sales price of an existing single-family home reached a record high of over ******* U.S. dollars. Newly built homes were even pricier, despite a slight decline in the median sales price in 2023. Naturally, home prices continue to vary significantly across the country, with West Virginia being the most affordable state for homebuyers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Paris Housing Price Prediction’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mssmartypants/paris-housing-price-prediction on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This is a set of data created from imaginary data of house prices in an urban environment - Paris. I recommend using this dataset for educational purposes, for practice and to acquire the necessary knowledge. What I'm trying to do next is to create a classification dataset with same data from this dataset, I'll add a new column for class attribute ofc. Here is a classification dataset ---> classification dataset <---
What's inside is more than just rows and columns. You can see house details listed as column names.
All attributes are numeric variables and they are listed bellow:
Idea was to create dataset that is good for regression and that gives adequate results.
--- Original source retains full ownership of the source dataset ---
The U.S. housing market continues to evolve, with the median home price forecast to reach ******* U.S. dollars by the second quarter of 2026. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices, but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately ****** U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding ****** U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with more modest price increases of *** percent in 2022 and *** percent in 2023. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in the fourth quarter of 2023, with Rhode Island and Vermont leading the pack at over ** percent appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.