59 datasets found
  1. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  2. House price to residence-based earnings ratio

    • ons.gov.uk
    • cy.ons.gov.uk
    • +1more
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price to residence-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/ratioofhousepricetoresidencebasedearningslowerquartileandmedian
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  3. American House Prices

    • kaggle.com
    zip
    Updated Dec 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Larcher (2023). American House Prices [Dataset]. https://www.kaggle.com/datasets/jeremylarcher/american-house-prices-and-demographics-of-top-cities
    Explore at:
    zip(682260 bytes)Available download formats
    Dataset updated
    Dec 9, 2023
    Authors
    Jeremy Larcher
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    A dataset comprising various variables around housing and demographics for the top 50 American cities by population.

    Variables:

    Zip Code: Zip code within which the listing is present.

    Price: Listed price for the property.

    Beds: Number of beds mentioned in the listing.

    Baths: Number of baths mentioned in the listing.

    Living Space: The total size of the living space, in square feet, mentioned in the listing.

    Address: Street address of the listing.

    City: City name where the listing is located.

    State: State name where the listing is located.

    Zip Code Population: The estimated number of individuals within the zip code. Data from Simplemaps.com.

    Zip Code Density: The estimated number of individuals per square mile within the zip code. Data from Simplemaps.com.

    County: County where the listing is located.

    Median Household income: Estimated median household income. Data from the U.S. Census Bureau.

    Latitude: Latitude of the zip code. ** Data from Simplemaps.com.**

    Longitude: Longitude of the zip code. Data from Simplemaps.com.

  4. 🏡 Global Housing Market Analysis (2015-2024)

    • kaggle.com
    zip
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atharva Soundankar (2025). 🏡 Global Housing Market Analysis (2015-2024) [Dataset]. https://www.kaggle.com/datasets/atharvasoundankar/global-housing-market-analysis-2015-2024
    Explore at:
    zip(18363 bytes)Available download formats
    Dataset updated
    Mar 18, 2025
    Authors
    Atharva Soundankar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.

    📑 Column Descriptions

    Column NameDescription
    CountryThe country where the housing market data is recorded 🌍
    YearThe year of observation 📅
    Average House Price ($)The average price of houses in USD 💰
    Median Rental Price ($)The median monthly rent for properties in USD 🏠
    Mortgage Interest Rate (%)The average mortgage interest rate percentage 📉
    Household Income ($)The average annual household income in USD 🏡
    Population Growth (%)The percentage increase in population over the year 👥
    Urbanization Rate (%)Percentage of the population living in urban areas 🏙️
    Homeownership Rate (%)The percentage of people who own their homes 🔑
    GDP Growth Rate (%)The annual GDP growth percentage 📈
    Unemployment Rate (%)The percentage of unemployed individuals in the labor force 💼
  5. Standardised house price-to-income ratio - annual data

    • ec.europa.eu
    • opendata.marche.camcom.it
    • +1more
    Updated Oct 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Standardised house price-to-income ratio - annual data [Dataset]. http://doi.org/10.2908/TIPSHO60
    Explore at:
    json, application/vnd.sdmx.data+csv;version=2.0.0, tsv, application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.data+xml;version=3.0.0Available download formats
    Dataset updated
    Oct 10, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2000 - 2024
    Area covered
    Austria, Croatia, Belgium, Sweden, Cyprus, Netherlands, Bulgaria, Poland, Ireland, Malta
    Description

    The standardised house price-to-income ratio is defined as the ratio of the current price to income ratio relative to the long-term average price-to-income ratio, calculated over the period 2000 to the most recent data available. If the ratio equals 100, it means the current price-to-income ratio is equal to its long term average. House prices are provided by Eurostat, and income is calculated as adjusted household gross disposable income (B7G) per head of population based on Eurostat data.

  6. o

    House price to earnings ratio, England

    • opendatacommunities.org
    • data.europa.eu
    • +1more
    Updated Nov 30, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). House price to earnings ratio, England [Dataset]. https://opendatacommunities.org/data/housing-market/ratio/house-price-to-earnings
    Explore at:
    Dataset updated
    Nov 30, 2018
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This dataset contains the ratio of lower quartile/median house price to lower quartile/median earnings in England

  7. House price to workplace-based earnings ratio

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price to workplace-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/ratioofhousepricetoworkplacebasedearningslowerquartileandmedian
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices by gross annual workplace-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  8. C

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  9. Rental Affordability Based on Median Income

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Rental Affordability Based on Median Income [Dataset]. https://www.kaggle.com/thedevastator/rental-affordability-analysis-based-on-median-in
    Explore at:
    zip(38320 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Description

    Rental Affordability Analysis Based on Median Income

    Trends in Tier-Based Affordability Across the U.S

    By Zillow Data [source]

    About this dataset

    This dataset contains rental affordability data for different regions in the US, giving valuable insights into regional rental markets. Renters can use this information to identify where their budget will go the farthest. The cities are organized by rent tier in order to analyze affordability trends within and between different housing stock types. Within each region, the data includes median household income, Zillow Rent Index (ZRI), and percent of income spent on rent.

    The Zillow Home Value Forecast (ZHVF) is used to calculate future combined mortgage pay/rent payments in each region using current median home prices, actual outstanding debt amounts and 30-year fixed mortgage interest rates reported through partnership with TransUnion credit bureau. Zillow also provides a breakdown of cash vs financing purchases for buyers looking for an investment or cash option solution.

    This dataset provides an effective tool for consumers who want to better understand how their budget fits into diverse rental markets across the US; from condominiums and co-ops, multifamily residences with five or more units, duplexes and triplexes - every renter can determine how their housing budget should be adjusted as they consider multiple living possibilities throughout the country based on real-time price data!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    Introduction

    Getting Started

    • First, you'll need to download the TieredAffordability_Rental.csv dataset from this Kaggle page onto your computer or device.

    • After downloading the data set onto your device, open it with any CSV viewing software of your choice (ex: Excel). It will include columns for RegionName**RegionName** , homes type/housing stock (All Homes or Condo/Co-op) SizeRank , Rent tier tier , Date date , median household income income , Zillow Rent Index zri and PercentIncomeSpentOnRent percentage (what portion of monthly median house-hold goes toward monthly mortgage payment) .

    • To begin analyzing rental prices across different regions using this dataset, look first at column four: SizeRank; which ranks each region based on size - smallest regions listed first and largest at last - so that you can compare a similar range of Regions when looking at affordability by home sizes larger than one unit multiplex dwellings.*Duples/Triplex*. Once there is an understanding of how all homes compare overall now it is time to consider home types Multifamily 5+ units according to rent tiers tier .

    • Next, choose one or more region(s) for comparison based on their rank in SizeRank column –so that all information gathered about them reflects what portionof households fall into certain categories ; eg; All Homes / Small Home /Large Home / MultiPlex Dwelling and what tier does each size rank falls into eg.: Affordable/Slightly Expensive/ Moderately Expensive etc.. This will enable further abstraction from other elements like date vs inflation rate per month or periodical intervals set herein by Rate segmentation i e dates givenin ‘Date’Columns – making the task easier and more direct while analyzing renatalAffordibility Analysis Based On Median Income zri 00 zwi & PCISOR 00 PCIRO

    Research Ideas

    • Use the PercentIncomeSpentOnRent column to compare rental affordability between regions within a particular tier and determine optimal rent tiers for relocating families.
    • Analyze how market conditions are affecting rental affordability over time by using the income, zri, and PercentageIncomeSpentOnRent columns.
    • Identify trends in housing prices for different tiers over the years by comparing SizeRank data with Zillow Home Value Forecast (ZHVF) numbers across different regions in order to identify locations that may be headed up or down in terms of home values (and therefore rent levels)

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: TieredAffordability_Rental.csv | Column name | Description | |:-----------------------------|:-------------------------------------------------------------| | RegionName | The name of the region. (String) ...

  10. T

    Taiwan Housing Price to Income Ratio

    • ceicdata.com
    Updated Jun 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Taiwan Housing Price to Income Ratio [Dataset]. https://www.ceicdata.com/en/taiwan/housing-price-and-housing-loan-payment-to-income-ratio/housing-price-to-income-ratio
    Explore at:
    Dataset updated
    Jun 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2015 - Dec 1, 2017
    Area covered
    Taiwan
    Variables measured
    Price
    Description

    Taiwan Housing Price to Income Ratio data was reported at 9.160 Times in Dec 2017. This records a decrease from the previous number of 9.220 Times for Sep 2017. Taiwan Housing Price to Income Ratio data is updated quarterly, averaging 6.735 Times from Mar 2002 (Median) to Dec 2017, with 64 observations. The data reached an all-time high of 9.460 Times in Jun 2017 and a record low of 4.150 Times in Sep 2002. Taiwan Housing Price to Income Ratio data remains active status in CEIC and is reported by Construction and Planning Agency, Ministry of the Interior. The data is categorized under Global Database’s Taiwan – Table TW.EB017: Housing Price and Housing Loan Payment to Income Ratio.

  11. s

    Price-to-income ratio of residential property buyers by first-time home...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Price-to-income ratio of residential property buyers by first-time home buyer status [Dataset]. http://doi.org/10.25318/4610009901-eng
    Explore at:
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Government of Canada, Statistics Canada
    Area covered
    Canada
    Description

    Residents buyers who are persons that purchased a residential property in a market sale and filed their T1 tax return form, as well as total income, family total income, sale price, price-to-income ratio, and age, by the number of buyers, age group, first-time home buyer status, and buyer characteristics (sex, family type, immigration status, period of immigration, admission category).

  12. f

    Effects of neighborhood age, housing density, home price, and household...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated May 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hopperstad, Kristen; Dunn, Robert R.; Beaulieu, Meredith R. Spence; Reiskind, Michael H. (2019). Effects of neighborhood age, housing density, home price, and household income on mosquito diversity measures. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000097036
    Explore at:
    Dataset updated
    May 1, 2019
    Authors
    Hopperstad, Kristen; Dunn, Robert R.; Beaulieu, Meredith R. Spence; Reiskind, Michael H.
    Description

    Effects of neighborhood age, housing density, home price, and household income on mosquito diversity measures.

  13. T

    Poland House Price Index

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Poland House Price Index [Dataset]. https://tradingeconomics.com/poland/housing-index
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2010 - Jun 30, 2025
    Area covered
    Poland
    Description

    Housing Index in Poland increased to 215.66 points in the second quarter of 2025 from 213.20 points in the first quarter of 2025. This dataset provides the latest reported value for - Poland Housing Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  14. a

    Median Income, Home Value and Residential Property Taxes in NJ Census Tracts...

    • hub.arcgis.com
    • njogis-newjersey.opendata.arcgis.com
    Updated Mar 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJ Department of Community Affairs (2023). Median Income, Home Value and Residential Property Taxes in NJ Census Tracts [Dataset]. https://hub.arcgis.com/datasets/709328735a5849d891ff3478e7559a56
    Explore at:
    Dataset updated
    Mar 2, 2023
    Dataset authored and provided by
    NJ Department of Community Affairs
    Area covered
    Description

    All data are 2020 Census Tract (neighborhood) level five-year estimates from the U.S. Census Bureau American Community Survey from 2017 to 2021. Median household income earned in the past 12 months. Includes wage or salary income; net self-employment income; interest, dividends, or net rental or royalty income or income from estates and trusts; Social Security or Railroad Retirement income; Supplemental Security Income (SSI); public assistance or welfare payments; retirement, survivor, or disability pensions; and all other income. Median home value (an estimate of how much the property would sell for if it were for sale) for properties owned, being bought, vacant for sale, or sold but not occupied at the time of the survey. Data are based on values reported by property owners. Median real estate taxes (due to all taxing jurisdictions) for owner-occupied properties are based on taxes reported by homeowners to the Census Bureau in the American Community Survey from 2017 to 2021.

  15. N

    New Home, TX Median Household Income Trends (2010-2023, in 2023...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). New Home, TX Median Household Income Trends (2010-2023, in 2023 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/research/datasets/1703d737-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, New Home
    Variables measured
    Median Household Income, Median Household Income Year on Year Change, Median Household Income Year on Year Percent Change
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It presents the median household income from the years 2010 to 2023 following an initial analysis and categorization of the census data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset illustrates the median household income in New Home, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.

    Key observations:

    From 2010 to 2023, the median household income for New Home decreased by $15,440 (21.44%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.

    Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 8 years and declined for 5 years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Years for which data is available:

    • 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 0223

    Variables / Data Columns

    • Year: This column presents the data year from 2010 to 2023
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific year
    • YOY Change($): Change in median household income between the current and the previous year, in 2023 inflation-adjusted dollars
    • YOY Change(%): Percent change in median household income between current and the previous year

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for New Home median household income. You can refer the same here

  16. U.S. Software Developer Salaries

    • kaggle.com
    zip
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). U.S. Software Developer Salaries [Dataset]. https://www.kaggle.com/datasets/thedevastator/u-s-software-developer-salaries/versions/2
    Explore at:
    zip(4436 bytes)Available download formats
    Dataset updated
    Feb 11, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    U.S. Software Developer Salaries

    Analyzing Regional Variations

    By [source]

    About this dataset

    This dataset provides an extensive look into the financial health of software developers in major cities and metropolitan areas around the United States. We explore disparities between states and cities in terms of mean software developer salaries, median home prices, cost of living avgs, rent avgs, cost of living plus rent avgs and local purchasing power averages. Through this data set we can gain insights on how to better understand which areas are more financially viable than others when seeking employment within the software development field. Our data allow us to uncover patterns among certain geographic locations in order to identify other compelling financial opportunities that software developers may benefit from

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains valuable information about software developer salaries across states and cities in the United States. It is important for recruiters and professionals alike to understand what kind of compensation software developers are likely to receive, as it may be beneficial when considering job opportunities or applying for a promotion. This guide will provide an overview of what you can learn from this dataset.

    The data is organized by metropolitan areas, which encompass multiple cities within the same geographical region (e.g., “New York-Northern New Jersey” covers both New York City and Newark). From there, each metro can be broken down further into a number of different factors that may affect software developer salaries in the area:

    • Mean Software Developer Salary (adjusted): The average salary of software developers in that particular metro area after accounting for cost of living differences within the region.
    • Mean Software Developer Salary (unadjusted): The average salary of software developers in that particular metro area before adjusting for cost-of-living discrepancies between locales.
    • Number of Software Developer Jobs: This column lists how many total jobs are available to software developers in this particular metropolitan area.
    • Median Home Price: A metric which shows median value of all homes currently on the market within this partcular city or state. It helps gauge how expensive housing costs might be to potential residents who already have an idea about their income/salary range expectations when considering a move/relocation into another location or potentially looking at mortgage/rental options etc.. 5) Cost Of Living Avg: A metric designed to measure affordability using local prices paid on common consumer goods like food , transportation , health care , housing & other services etc.. Also prominent here along with rent avg ,cost od living plus rent avg helping compare relative cost structures between different locations while assessing potential remunerations & risk associated with them . 6)Local Purchasing Power Avg : A measure reflecting expected difference in discretionary spending ability among households regardless their income level upon relocation due to price discrepancies across locations allows individual assessment critical during job search particularly regarding relocation as well as comparison based decision making across prospective candidates during any hiring process . 7 ) Rent Avg : Average rental costs for homes / apartments dealbreakers even among prime job prospects particularly medium income earners.(basis family size & other constraints ) 8 ) Cost Of Living Plus Rent Avg : Used here as one sized fits perspective towards measuring overall cost structure including items

    Research Ideas

    • Comparing salaries of software developers in different cities to determine which city provides the best compensation package.
    • Estimating the cost of relocating to a new city by looking at average costs such as rent and cost of living.
    • Predicting job growth for software developers by analyzing factors like local purchasing power, median home price and number of jobs available

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking perm...

  17. Negative Equity in U.S. Housing Market

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Negative Equity in U.S. Housing Market [Dataset]. https://www.kaggle.com/datasets/thedevastator/negative-equity-in-u-s-housing-market-2017-summa
    Explore at:
    zip(6592634 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Negative Equity in U.S. Housing Market

    Measuring Home Values, Debt, and Credit Risk

    By Zillow Data [source]

    About this dataset

    This dataset, Negative Equity in the US Housing Market, provides an in-depth look into the negative equity occurring across the United States during this single quarter. Included are metrics such as total amount of negative equity in millions of dollars, total number of homes in negative equity, percentage of homes with mortgages that are in negative equity and more. These data points provide helpful insights into both regional and national trends regarding the prevalence and rate of home mortgage delinquency stemming from a diminishment of value from peak levels.

    Home types available for analysis include 'all homes', condos/co-ops, multifamily units containing five or more housing units as well as duplexes/triplexes. Additionally, Cash buyers rates for particular areas can also be determined by referencing this collection. Further metrics such as mortgage affordability rates and impacts on overall indebtedness are readily calculated using information related to Zillow's Home Value Index (ZHVI) forecast methodology and TransUnion data respectively.

    Other variables featured within this dataset include characteristics like region type (i.e city, county ..etc), size rank based on population values , percentage change in ZHVI since peak levels as well as loan-to-value ratio greater than 200 across all regions constituted herein (NE). Moreover Zillow's own Secondary Mortgage Market Survey data is utilized to acquire average mortgage quote rates while correlative Census Bureau NCHS median household income figures represent typical assessable proportions between wages and debt obligations . So whether you're looking to assess effects along metro lines or detailed buffering through zip codes , this database should prove sufficient for insightful explorations! Nonetheless users must strictly adhere to all conditions encompassed within Terms Of Use commitments put forth by our lead provider before accessing any resources included herewith

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    Research Ideas

    • Analyzing regional and state trends in negative equity: Analyze geographic differences in the percentage of mortgages “underwater”, total amount of negative equity, number of homes at least 90 days late, and other key indicators to provide insight into the factors influencing negative equity across regions, states and cities.
    • Tracking the recovery rate over time: Track short-term changes in numbers related to negative equity (e.g., region or area ZHVI Change from Peak) to monitor recovery rates over time as well as how different policy interventions are affecting homeownership levels in affected areas.
    • Exploring best practices for promoting housing affordability: Compare affordability metrics (e.g., mortgage payments, price-to-income ratios) across different geographic locations over time to identify best practices for empowering homeowners and promoting stability within the housing market while reducing local inequality impacts related to availability of affordable housing options and access to credit markets like mortgages/loans etc

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: NESummary_2017Q1_Public.csv | Column name | Description | |:------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| | RegionType | The type of region (e.g., city, county, metro etc.) (String) | | City | Name of the city (String) | | County | Name of the county (String) | | State | Name of the state (String) | | Metro ...

  18. G

    Residential property buyers: Demographic data, first-time home buyer status,...

    • open.canada.ca
    • www150.statcan.gc.ca
    csv, html, xml
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). Residential property buyers: Demographic data, first-time home buyer status, and price-to-income ratio, inactive [Dataset]. https://open.canada.ca/data/dataset/487292a4-4b27-4cbe-a78c-26c3661b5580
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Data on resident buyers who are persons that purchased a residential property in a market sale and filed their T1 tax return form: number of and incomes of residential property buyers, sale price, price-to-income ratio by the number of buyers as part of a sale, age groups, first-time home buyer status, buyer characteristics (sex, family type, immigration status, period of immigration, admission category).

  19. Canadian house prices for top cities

    • kaggle.com
    zip
    Updated Oct 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Larcher (2023). Canadian house prices for top cities [Dataset]. https://www.kaggle.com/datasets/jeremylarcher/canadian-house-prices-for-top-cities
    Explore at:
    zip(459004 bytes)Available download formats
    Dataset updated
    Oct 29, 2023
    Authors
    Jeremy Larcher
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Canada
    Description

    A dataset comprising the price, address, number of bathrooms, number of bedrooms, city, and province of real estate listings for Canada's top 45 most populous cities, according to the 2021 census.

    Variables:

    1. City: City or major metropolitan area within which listings were found. For example, Toronto may include listings from surrounding suburbs such as Markham, Oakville, etc.
    2. Price: Listed price for the property in Canadian dollars.
    3. Address: Street address and, where applicable, unit number for the listing.
    4. Number_Beds: Number of bedrooms mentioned in the listing.
    5. Number_Baths: Number of bathrooms mentioned in the listing.
    6. Province: Province in which each city resides. Note, border towns such as Ottawa do not include listings from the surrounding out-of-province cities like Gatineau.
    7. Population: City population. According to simplemaps (https://simplemaps.com/data/canada-cities)
    8. Longitude / Latitude: Longitude and Latitude data for individual cities, taken from simpelmaps (https://simplemaps.com/data/canada-cities)
    9. Median_Family_Income: Median household income for the city taken from the 2021 Canadian census.

    This dataset can be used for basic linear regression problems or for basic exploratory data analysis.

    Data is currently representative of prices as of October 29th 2023. Future updates will occur monthly.

  20. S

    Switzerland CH: Price to Income Ratio: sa

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Switzerland CH: Price to Income Ratio: sa [Dataset]. https://www.ceicdata.com/en/switzerland/house-price-index-seasonally-adjusted-oecd-member-annual/ch-price-to-income-ratio-sa
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2013 - Dec 1, 2024
    Area covered
    Switzerland
    Description

    Switzerland Price to Income Ratio: sa data was reported at 125.810 2015=100 in 2024. This records an increase from the previous number of 124.006 2015=100 for 2023. Switzerland Price to Income Ratio: sa data is updated yearly, averaging 110.203 2015=100 from Dec 1970 (Median) to 2024, with 55 observations. The data reached an all-time high of 142.115 2015=100 in 1989 and a record low of 72.862 2015=100 in 2001. Switzerland Price to Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Switzerland – Table CH.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
Organization logo

Housing Prices Dataset

Housing Prices Prediction - Regression Problem

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(4740 bytes)Available download formats
Dataset updated
Jan 12, 2022
Authors
M Yasser H
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

Description:

A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

Acknowledgement:

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Objective:

  • Understand the Dataset & cleanup (if required).
  • Build Regression models to predict the sales w.r.t a single & multiple feature.
  • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
Search
Clear search
Close search
Google apps
Main menu