76 datasets found
  1. a

    Home Sales Trends in the United States

    • attomdata.com
    attom api +4
    Updated Oct 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ATTOM Data Solutions (2018). Home Sales Trends in the United States [Dataset]. https://www.attomdata.com/data/real-estate-market-analytics/sales-trend/
    Explore at:
    attom api, neighborhood navigator, excel, attom cloud, csvAvailable download formats
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    ATTOM Data Solutions
    Description

    Home sales data aggregated by boundaries (neighborhood, zip code, city, etc) in increments of month, quarter, or year

  2. F

    Average Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/ASPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.

  3. USA House Sales Data

    • kaggle.com
    zip
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul Wadood (2025). USA House Sales Data [Dataset]. https://www.kaggle.com/datasets/abdulwadood11220/usa-house-sales-data
    Explore at:
    zip(137669 bytes)Available download formats
    Dataset updated
    Jun 22, 2025
    Authors
    Abdul Wadood
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    📝 Dataset Description: This synthetic dataset contains 3,000 residential property listings modeled after real U.S. house sales data (in a Zillow-style format). It is designed for use in real estate analysis, machine learning, data visualization, and web scraping practice.

    Each row represents a unique property and includes 16 key features commonly used by real estate agents, investors, and analysts. The data spans multiple U.S. states and cities, with realistic values for price, square footage, bedroom/bathroom count, property type, and more.

    ✅ Included Fields: Price – Listing price (in USD)

    Address, City, State, Zipcode – U.S. formatted property location

    Bedrooms, Bathrooms, Area (Sqft) – Core home specs

    Lot Size, Year Built, Days on Market

    Property Type, MLS ID, Listing Agent, Status

    Listing URL – Mock Zillow-style property link

    ⚙️ Use Cases: Exploratory data analysis (EDA)

    Regression/classification model training

    Feature engineering and preprocessing

    Real estate dashboards and web app mockups

    Practice with BeautifulSoup, Pandas, or Power BI

  4. Redfin Housing Market Data 2012-2021

    • kaggle.com
    zip
    Updated Feb 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thuy Le (2022). Redfin Housing Market Data 2012-2021 [Dataset]. https://www.kaggle.com/thuynyle/redfin-housing-market-data
    Explore at:
    zip(2973378786 bytes)Available download formats
    Dataset updated
    Feb 18, 2022
    Authors
    Thuy Le
    Description

    Overview

    This residential real estate data set was created by Redfin, an online real estate brokerage. Published on January 9th, 2022, this data summarize the monthly housing market for every State, Metro, and Zip code in the US from 2012 to 2021. Redfin aggregated this data across multiple listing services and has been gracious enough to include property type in their reporting. Please properly cite and link to RedFin if you end up using this data for your research or project.

    Source: RedFin Data Center

    Property Type

    Property type defined by RedFin

    • All Residential: All properties defined as single-family, condominium, co-operative, townhouses, and multi-family (2-4 units) homes with a county record.
    • Single Family Home (SFH): are homes built on a single lot, with no shared walls. Sometimes there’s a garage, attached or detached.
    • Condominium (Condo): Usually a single unit within a larger building or community. Generally come with homeowners’ associations (HOAs), which require the residents to pay monthly or yearly dues.
    • Cooperatives (Co-op): Usually a single unit within a larger building or community, but with a different way of holding a title to a shared building. You join a community and everyone in the community owns the building together.
    • Townhouse: a hybrid between a condo and a single-family home. They are often multiple floors, with one or two shared walls, and some have a small yard space or rooftop deck. They’re generally larger than a condo, but smaller than a single-family home.
    • Multifamily (2-4 units): They are essentially a home that has been turned into two or more units but the units cannot be purchased individually. There is one owner for the whole building.
    • Land: Just land, no home of any type for sale.

    Source: Building Types

    Property Type

    For more definitions, please visit RedFin Data Center Metrics

    • Average sale to list: The mean ratio of each home's sale price divided by their list price covering all homes with a sale date during a given time period. Excludes properties with a sale price of 50%.
    • Home sales: Total number of homes with a sale date during a given time period.
    • Inventory: Total number of active listings on the last day of a given time period.
    • Median active list ppsf: The median list price per square foot of all active listings.
    • Median active list price: The median list price of all active listings.
    • Median active listings: The median of how many listings were active on each day within a given time period.
    • Median days on market: The number of days between the date the home was listed for sale and when the home went off-market/pending sale covering all homes with an off-market date during a given time period where 50% of the off-market homes sat longer on the market and 50% went off the market faster. Excludes homes that sat on the market for more than 1 year.
    • Median days to close: The median number of days a home takes to go from pending to sold.
    • Median list price: The most recent listing price covering all homes with a listing date during a given time period where 50% of the active listings were above this price and 50% were below this price.
    • Median list price per square foot: The most recent listing price divided by the total square feet of the property (not the lot) covering all homes with a listing date during a given time period where 50% of the active listings were above this price per sqft and 50% were below this price per sqft.
    • Median listing with price drops: The median of how many listings were active on each day and whose current list price is less than the original list price within a given time period.
    • Median sale price: The final home sale price covering all homes with a sale date during a given time period where 50% of the sales were above this price and 50% were below this price.
    • Median sale price per square foot: The final home sale price divided by the total square feet of the property (not the lot) covering all homes with a sale date during a given time period where 50% of the sales were above this price per sqft and 50% were below this price per sqft.
    • Months of supply: When data are monthly, it is inventory divided by home sales. This tells you how long it would take supply to be bought up if no new homes came on the market.
    • New listings: Total number of homes with a listing added date during a given time period.
    • Off market in two weeks: The total number of homes that went under contract within two weeks of their listing date.
    • Pending home sales: Total homes that went under contract during the period. Excludes homes that were on the market longer than 90 ...
  5. Washington D.C. housing market 2024

    • kaggle.com
    zip
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natasha Lekh (2024). Washington D.C. housing market 2024 [Dataset]. https://www.kaggle.com/datasets/datadetective08/washington-d-c-housing-market-2024
    Explore at:
    zip(147382065 bytes)Available download formats
    Dataset updated
    Jun 5, 2024
    Authors
    Natasha Lekh
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Washington
    Description

    These datasets contain comprehensive information on current real estate listings in Washington, D.C., obtained from Zillow, and offer a detailed overview of the Washington, D.C. housing market as of 5th June 2024.

    The data was extracted from Zillow using a combination of two scraping tools from Apify: Zillow ZIP Code Scraper 🔗 https://apify.com/maxcopell/zillow-zip-search and Zillow Details Scraper 🔗 https://apify.com/maxcopell/zillow-detail-scraper.

    The full dataset includes all details for each listing for sale, such as:

    • 📍 Complete address, city, state, zip code, latitude/longitude coordinates
    • 🏡 Property type (single family, condo, apartment, etc.)
    • 💵 Listing price
    • 🛏️ Number of bedrooms and bathrooms
    • 📐 Square footage
    • 🌳 Lot size in acres (if applicable)
    • 🏗️ Year of construction
    • 🏘️ HOA fees (if applicable)
    • 💸 Property tax history
    • ✨ Amenities such as rooftop terraces, concierge services, etc.
    • 🏫 Nearby schools and their GreatSchools ratings
    • 🧑‍💼 Property and listing agents, brokers, and their contact information
    • 🕒 Availability for tours and open houses
    • 🖼️ Links to listing photos

    With over 5,000 current listings, this dataset is perfect for in-depth analysis of the Washington, D.C. housing market and the Washington, D.C. real estate scene. Potential applications include:

    • Comparing listing prices and price per square foot across various neighborhoods and property types
    • Mapping listings to visualize the spatial distribution of available inventory
    • Analyzing the age of available housing stock using year-of-construction data
    • Assessing typical HOA fees and property taxes for listings
    • Identifying listings with desirable amenities
    • Evaluating school quality near listings using GreatSchools ratings
    • Contacting listing agents programmatically using the provided agent information

    Whether you're a real estate professional, market analyst, data scientist, or simply interested in the Washington, D.C., housing market, this dataset offers a wealth of information to explore. You can begin investigating and discovering insights into Washington, D.C. real estate today.

  6. C

    Allegheny County Property Sale Transactions

    • data.wprdc.org
    • s.cnmilf.com
    • +3more
    csv, html
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2025). Allegheny County Property Sale Transactions [Dataset]. https://data.wprdc.org/dataset/real-estate-sales
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.

    Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.

    Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.

  7. Vital Signs: Home Prices – Bay Area

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-Bay-Area/vnvp-ma92
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  8. Annual home price appreciation in the U.S. 2025, by state

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2025, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.

  9. Zillow Home Value Index (Updated Monthly)

    • kaggle.com
    zip
    Updated Oct 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rob Mulla (2025). Zillow Home Value Index (Updated Monthly) [Dataset]. https://www.kaggle.com/datasets/robikscube/zillow-home-value-index
    Explore at:
    zip(273663 bytes)Available download formats
    Dataset updated
    Oct 21, 2025
    Authors
    Rob Mulla
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Reference: https://www.zillow.com/research/zhvi-methodology/

    Official Background

    In setting out to create a new home price index, a major problem Zillow sought to overcome in existing indices was their inability to deal with the changing composition of properties sold in one time period versus another time period. Both a median sale price index and a repeat sales index are vulnerable to such biases (see the analysis here for an example of how influential the bias can be). For example, if expensive homes sell at a disproportionately higher rate than less expensive homes in one time period, a median sale price index will characterize this market as experiencing price appreciation relative to the prior period of time even if the true value of homes is unchanged between the two periods.

    The ideal home price index would be based off sale prices for the same set of homes in each time period so there was never an issue of the sales mix being different across periods. This approach of using a constant basket of goods is widely used, common examples being a commodity price index and a consumer price index. Unfortunately, unlike commodities and consumer goods, for which we can observe prices in all time periods, we can’t observe prices on the same set of homes in all time periods because not all homes are sold in every time period.

    The innovation that Zillow developed in 2005 was a way of approximating this ideal home price index by leveraging the valuations Zillow creates on all homes (called Zestimates). Instead of actual sale prices on every home, the index is created from estimated sale prices on every home. While there is some estimation error associated with each estimated sale price (which we report here), this error is just as likely to be above the actual sale price of a home as below (in statistical terms, this is referred to as minimal systematic error). Because of this fact, the distribution of actual sale prices for homes sold in a given time period looks very similar to the distribution of estimated sale prices for this same set of homes. But, importantly, Zillow has estimated sale prices not just for the homes that sold, but for all homes even if they didn’t sell in that time period. From this data, a comprehensive and robust benchmark of home value trends can be computed which is immune to the changing mix of properties that sell in different periods of time (see Dorsey et al. (2010) for another recent discussion of this approach).

    For an in-depth comparison of the Zillow Home Value Index to the Case Shiller Home Price Index, please refer to the Zillow Home Value Index Comparison to Case-Shiller

    Each Zillow Home Value Index (ZHVI) is a time series tracking the monthly median home value in a particular geographical region. In general, each ZHVI time series begins in April 1996. We generate the ZHVI at seven geographic levels: neighborhood, ZIP code, city, congressional district, county, metropolitan area, state and the nation.

    Underlying Data

    Estimated sale prices (Zestimates) are computed based on proprietary statistical and machine learning models. These models begin the estimation process by subdividing all of the homes in United States into micro-regions, or subsets of homes either near one another or similar in physical attributes to one another. Within each micro-region, the models observe recent sale transactions and learn the relative contribution of various home attributes in predicting the sale price. These home attributes include physical facts about the home and land, prior sale transactions, tax assessment information and geographic location. Based on the patterns learned, these models can then estimate sale prices on homes that have not yet sold.

    The sale transactions from which the models learn patterns include all full-value, arms-length sales that are not foreclosure resales. The purpose of the Zestimate is to give consumers an indication of the fair value of a home under the assumption that it is sold as a conventional, non-foreclosure sale. Similarly, the purpose of the Zillow Home Value Index is to give consumers insight into the home value trends for homes that are not being sold out of foreclosure status. Zillow research indicates that homes sold as foreclosures have typical discounts relative to non-foreclosure sales of between 20 and 40 percent, depending on the foreclosure saturation of the market. This is not to say that the Zestimate is not influenced by foreclosure resales. Zestimates are, in fact, influenced by foreclosure sales, but the pathway of this influence is through the downward pressure foreclosure sales put on non-foreclosure sale prices. It is the price signal observed in the latter that we are attempting to measure and, in turn, predict with the Zestimate.

    Market Segments Within each region, we calculate the ZHVI for various subsets of homes (or mar...

  10. Vital Signs: Home Prices – by county

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-by-county/wcca-cxzn
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  11. F

    Housing Inventory: Active Listing Count in the United States

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Active Listing Count in the United States [Dataset]. https://fred.stlouisfed.org/series/ACTLISCOUUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Housing Inventory: Active Listing Count in the United States (ACTLISCOUUS) from Jul 2016 to Oct 2025 about active listing, listing, and USA.

  12. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  13. T

    Vital Signs: Home Prices by Metro Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices by Metro Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-by-Metro-Area-2022-/rgc5-3kcq
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  14. d

    All-Transactions House Price Index for Connecticut

    • catalog.data.gov
    • fred.stlouisfed.org
    • +1more
    Updated Nov 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). All-Transactions House Price Index for Connecticut [Dataset]. https://catalog.data.gov/dataset/all-transactions-house-price-index-for-connecticut
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    The FHFA House Price Index (FHFA HPI®) is the nation’s only collection of public, freely available house price indexes that measure changes in single-family home values based on data from all 50 states and over 400 American cities that extend back to the mid-1970s. The FHFA HPI incorporates tens of millions of home sales and offers insights about house price fluctuations at the national, census division, state, metro area, county, ZIP code, and census tract levels. FHFA uses a fully transparent methodology based upon a weighted, repeat-sales statistical technique to analyze house price transaction data. ​ What does the FHFA HPI represent? The FHFA HPI is a broad measure of the movement of single-family house prices. The FHFA HPI is a weighted, repeat-sales index, meaning that it measures average price changes in repeat sales or refinancings on the same properties. This information is obtained by reviewing repeat mortgage transactions on single-family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac since January 1975. The FHFA HPI serves as a timely, accurate indicator of house price trends at various geographic levels. Because of the breadth of the sample, it provides more information than is available in other house price indexes. It also provides housing economists with an improved analytical tool that is useful for estimating changes in the rates of mortgage defaults, prepayments and housing affordability in specific geographic areas. U.S. Federal Housing Finance Agency, All-Transactions House Price Index for Connecticut [CTSTHPI], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CTSTHPI, August 2, 2023.

  15. Zillow (Phila. only)

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2025). Zillow (Phila. only) [Dataset]. https://catalog.data.gov/dataset/zillow-phila-only
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Zillowhttp://zillow.com/
    Area covered
    Philadelphia
    Description

    Searchable online database of homes for sale, rent, and not currently on the market, with value estimator, market report, and real-estate trend tool. Users search by location (neighborhood, city, zip code, address) and parameters, such as property specifications, pricing, and keyword. Registration allows for favorite listing saving, customized property e-mail alerts, and other privileges. Users can also access real-estate listing data through an API.

  16. Property Sales Data for Zip code 32092

    • kaggle.com
    zip
    Updated Oct 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SRSCHRE (2023). Property Sales Data for Zip code 32092 [Dataset]. https://www.kaggle.com/datasets/srschre/property-sales-data-for-zip-code-32092
    Explore at:
    zip(1604501 bytes)Available download formats
    Dataset updated
    Oct 19, 2023
    Authors
    SRSCHRE
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by SRSCHRE

    Released under CC0: Public Domain

    Contents

  17. Realtor Real Estate USA

    • kaggle.com
    Updated Oct 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neeraj (2023). Realtor Real Estate USA [Dataset]. https://www.kaggle.com/datasets/neerajkld/realtor-real-estate-usa
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 12, 2023
    Dataset provided by
    Kaggle
    Authors
    Neeraj
    Area covered
    United States
    Description

    Context This dataset shows real estate listing in USA. It includes the price, zip codes etc

    Sources This shows real estate data of company called Realtor - https://www.realtor.com. I downloaded the dataset from kaggle.

    About Dataset 1 csv. file contains 10 columns - realtor-data.csv (100k+ entries) - status (Housing status - a. ready for sale or b. ready to build) - bed (# of beds) - bath (# of bathrooms) - acre_lot (Property / Land size in acres) - city (city name) - state (state name) - zip_code (postal code of the area) - house_size (house area/size/living space in square feet) - prev_sold_date (Previously sold date) - price (Housing price, it is either the current listing price or recently sold price if the house is sold recently)

    Cover Image Downloaded from Google Stock images.

    Disclaimer The data and information in the data set provided here are intended to use for educational purposes only. I do not own any data, and all rights are reserved to the respective owners.

  18. w

    Albuquerque Housing Market Tracker – Weekly (SFD)

    • welcomehomeabq.com
    csv, json
    Updated Oct 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Venturi Realty Group (2025). Albuquerque Housing Market Tracker – Weekly (SFD) [Dataset]. https://welcomehomeabq.com/albuquerque-housing-market-tracker/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Oct 31, 2025
    Dataset authored and provided by
    Venturi Realty Group
    Area covered
    Albuquerque, NM, Albuquerque
    Measurement technique
    Altos 7-day weekly index and 90-day rolling average
    Description

    Weekly Altos Research metrics: Market Action Index, inventory, pendings, prices, DOM, reductions. 7-day and 90-day readings.

  19. d

    Maryland Total Residential Sales 2010 - 2022 Zip Codes

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jan 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). Maryland Total Residential Sales 2010 - 2022 Zip Codes [Dataset]. https://catalog.data.gov/dataset/maryland-total-residential-sales-2010-2022-zip-codes
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    Dataset includes total residential sales by zip code for 2010-2022. When a zip code crosses a county boundary, it is split into two records by county.

  20. W

    Albuquerque Weekly Housing Metrics (Altos Research)

    • welcomehomeabq.com
    Updated Oct 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altos Research (2025). Albuquerque Weekly Housing Metrics (Altos Research) [Dataset]. https://welcomehomeabq.com/albuquerque-housing-market-tracker/
    Explore at:
    Dataset updated
    Oct 31, 2025
    Dataset authored and provided by
    Altos Research
    License

    https://welcomehomeabq.com/terms/https://welcomehomeabq.com/terms/

    Area covered
    Albuquerque, NM
    Variables measured
    Pendings, Inventory, New Listings, % Price Decreased, Pending New Count, Market Action Index, Median Pending Price, Median Pending Price per Sq Ft
    Measurement technique
    Weekly rolling metrics; Altos methodology
    Description

    Live weekly charts for inventory, new listings, pending counts, Market Action Index, and median pending prices for the Albuquerque MSA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ATTOM Data Solutions (2018). Home Sales Trends in the United States [Dataset]. https://www.attomdata.com/data/real-estate-market-analytics/sales-trend/

Home Sales Trends in the United States

Explore at:
attom api, neighborhood navigator, excel, attom cloud, csvAvailable download formats
Dataset updated
Oct 3, 2018
Dataset authored and provided by
ATTOM Data Solutions
Description

Home sales data aggregated by boundaries (neighborhood, zip code, city, etc) in increments of month, quarter, or year

Search
Clear search
Close search
Google apps
Main menu