92 datasets found
  1. C

    Allegheny County Property Sale Transactions

    • data.wprdc.org
    • catalog.data.gov
    • +1more
    csv, html
    Updated Oct 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2025). Allegheny County Property Sale Transactions [Dataset]. https://data.wprdc.org/dataset/real-estate-sales
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    Oct 11, 2025
    Dataset authored and provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.

    Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.

    Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.

  2. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

  3. F

    Average Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/ASPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.

  4. Number of existing homes sold in the U.S. 1995-2024, with a forecast until...

    • statista.com
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of existing homes sold in the U.S. 1995-2024, with a forecast until 2026 [Dataset]. https://www.statista.com/statistics/226144/us-existing-home-sales/
    Explore at:
    Dataset updated
    Apr 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.

  5. D

    Assessor - Parcel Sales

    • datacatalog.cookcountyil.gov
    • s.cnmilf.com
    • +1more
    application/rdfxml +5
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cook County Assessor's Office (2025). Assessor - Parcel Sales [Dataset]. https://datacatalog.cookcountyil.gov/Property-Taxation/Assessor-Parcel-Sales/wvhk-k5uv
    Explore at:
    csv, tsv, xml, application/rdfxml, application/rssxml, jsonAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Cook County Assessor's Office
    Description

    Update 10/31/2023: Sales are no longer filtered out of this data set based on deed type, sale price, or recency of sale for a given PIN with the same price. If users wish to recreate the former filtering schema they should set sale_filter_same_sale_within_365, sale_filter_less_than_10k, and sale_filter_deed_type to False.

    Parcel sales for real property in Cook County, from 1999 to present. The Assessor's Office uses this data in its modeling to estimate the fair market value of unsold properties.

    When working with Parcel Index Numbers (PINs) make sure to zero-pad them to 14 digits. Some datasets may lose leading zeros for PINs when downloaded.

    Sale document numbers correspond to those of the Cook County Clerk, and can be used on the Clerk's website to find more information about each sale.

    NOTE: These sales are filtered, but likely include non-arms-length transactions - sales less than $10,000 along with quit claims, executor deeds, beneficial interests are excluded. While the Data Department will upload what it has access to monthly, sales are reported on a lag, with many records not populating until months after their official recording date.

    Current property class codes, their levels of assessment, and descriptions can be found on the Assessor's website. Note that class codes details can change across time.

    For more information on the sourcing of attached data and the preparation of this dataset, see the Assessor's Standard Operating Procedures for Open Data on GitHub.

    Read about the Assessor's 2025 Open Data Refresh.

  6. Price Paid Data

    • gov.uk
    Updated Sep 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). Price Paid Data [Dataset]. https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
    Explore at:
    Dataset updated
    Sep 29, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Description

    Our Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.

    Get up to date with the permitted use of our Price Paid Data:
    check what to consider when using or publishing our Price Paid Data

    Using or publishing our Price Paid Data

    If you use or publish our Price Paid Data, you must add the following attribution statement:

    Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.

    Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.

    Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.

    Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:

    • for personal and/or non-commercial use
    • to display for the purpose of providing residential property price information services

    If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.

    Address data

    The following fields comprise the address data included in Price Paid Data:

    • Postcode
    • PAON Primary Addressable Object Name (typically the house number or name)
    • SAON Secondary Addressable Object Name – if there is a sub-building, for example, the building is divided into flats, there will be a SAON
    • Street
    • Locality
    • Town/City
    • District
    • County

    August 2025 data (current month)

    The August 2025 release includes:

    • the first release of data for August 2025 (transactions received from the first to the last day of the month)
    • updates to earlier data releases
    • Standard Price Paid Data (SPPD) and Additional Price Paid Data (APPD) transactions

    As we will be adding to the August data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    We update the data on the 20th working day of each month. You can download the:

    Single file

    These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.

    Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.

    The data is updated monthly and the average size of this file is 3.7 GB, you can download:

  7. Current NYC Property Sales

    • kaggle.com
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Science Donut (2024). Current NYC Property Sales [Dataset]. https://www.kaggle.com/datasets/datasciencedonut/current-nyc-property-sales
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 5, 2024
    Dataset provided by
    Kaggle
    Authors
    Data Science Donut
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    New York
    Description

    Context and Acknowledgements This dataset is inspired by and improves upon the City of New York's NYC Property Sales dataset. The dataset contains a record of every property sold in the New York City property market since 2003 (the first year sales data was first listed on the public record) and updates monthly to include rolling sales.

    Please upvote if you found the dataset or additional resources helpful. 👍

    Content This dataset contains the location, address, type, sale price, tax category, and sale date of properties sold.

    • BOROUGH: Manhattan (1), Bronx (2), Brooklyn (3), Queens (4), and Staten Island (5).
    • TAX CLASSES:
      • 1: Most Residential Properties up to Three Units, Vacant Lots Zoned for Residential, Condominiums Less Than Three Stories.
      • 2: All Other Residential Properties.
      • 3: Property with equipment owned by a gas, telephone, or electric company.
      • 4: All other Properties (Garages, Factories, Warehouses...)
    • EASEMENT: A right that allows an entity to make limited use of another's real property.
    • $0 Sales Prices: Indicates a transfer of ownership without a cash consideration.

    For further reference on the fields in this dataset see the City of New York Department of Finance's Glossary of Terms and Building Codes.

    <div></div>

  8. d

    Real Estate Sales 2001-2023 GL

    • catalog.data.gov
    • data.ct.gov
    Updated Sep 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). Real Estate Sales 2001-2023 GL [Dataset]. https://catalog.data.gov/dataset/real-estate-sales-2001-2018
    Explore at:
    Dataset updated
    Sep 14, 2025
    Dataset provided by
    data.ct.gov
    Description

    The Office of Policy and Management maintains a listing of all real estate sales with a sales price of $2,000 or greater that occur between October 1 and September 30 of each year. For each sale record, the file includes: town, property address, date of sale, property type (residential, apartment, commercial, industrial or vacant land), sales price, and property assessment. Data are collected in accordance with Connecticut General Statutes, section 10-261a and 10-261b: https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261a and https://www.cga.ct.gov/current/pub/chap_172.htm#sec_10-261b. Annual real estate sales are reported by grand list year (October 1 through September 30 each year). For instance, sales from 2018 GL are from 10/01/2018 through 9/30/2019. Some municipalities may not report data for certain years because when a municipality implements a revaluation, they are not required to submit sales data for the twelve months following implementation.

  9. T

    Vital Signs: Home Prices - Bay Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Oct 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices - Bay Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-Bay-Area-2022-/2uf4-6aym
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 26, 2022
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  10. T

    Vital Signs: Home Prices by Metro Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices by Metro Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-by-Metro-Area-2022-/rgc5-3kcq
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  11. d

    Datasys | USA Real Estate & Property Ownership Data (150M+ properties |...

    • datarade.ai
    .csv, .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasys, Datasys | USA Real Estate & Property Ownership Data (150M+ properties | 100M+ owners | updated quarterly [Dataset]. https://datarade.ai/data-products/real-estate-data-property-and-new-home-owners-usa-propert-datasys
    Explore at:
    .csv, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Datasys
    Area covered
    United States of America
    Description

    Datasys: Property Ownership Data – 100M+ Records, Weekly Updates, Verified Every 30 Days

    Our Property file offers highly accurate data on real estate owners, updated weekly and verified against the National Change of Address (NCOA) registries every 30 days—four times more frequently than competitors. Perfect for postal, email, and phone outreach, this data guarantees improved responsiveness.

    With data sourced from public records, opt-in sources, and new movers’ files, each entry includes full name, postal address, company name, title, and industry. Datasys ensures top-quality, standardized records, with email and phone data updated quarterly, catering to both direct marketers and agencies.

  12. Zillow Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). Zillow Datasets [Dataset]. https://brightdata.com/products/datasets/zillow
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Gain a complete view of the real estate market with our Zillow datasets. Track price trends, rental/sale status, and price per square foot with the Zillow Price History dataset and explore detailed listings with prices, locations, and features using the Zillow Properties Listing dataset. Over 134M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:

    Zpid
    City
    State
    Home Status
    Street Address
    Zipcode
    Home Type
    Living Area Value
    Bedrooms
    Bathrooms
    Price
    Property Type
    Date Sold
    Annual Homeowners Insurance
    Price Per Square Foot
    Rent Zestimate
    Tax Assessed Value
    Zestimate
    Home Values
    Lot Area
    Lot Area Unit
    Living Area
    Living Area Units
    Property Tax Rate
    Page View Count
    Favorite Count
    Time On Zillow
    Time Zone
    Abbreviated Address
    Brokerage Name
    And much more
    
  13. d

    Grepsr | Real Estate Products, Property Listing, Sold Properties, Rankings,...

    • datarade.ai
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr (2024). Grepsr | Real Estate Products, Property Listing, Sold Properties, Rankings, Agent Datasets | Middle East Coverage with Custom and On-demand Datasets [Dataset]. https://datarade.ai/data-products/grepsr-real-estate-products-property-listing-sold-propert-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    Grepsr
    Area covered
    Middle East, Yemen, Iraq, Bahrain, Oman, Saudi Arabia, Iran (Islamic Republic of), Qatar, United Arab Emirates, Jordan, Lebanon
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  14. Number of house sales in the UK 2005-2025, by month

    • statista.com
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of house sales in the UK 2005-2025, by month [Dataset]. https://www.statista.com/statistics/290623/uk-housing-market-monthly-sales-volumes/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2005 - Jan 2025
    Area covered
    United Kingdom
    Description

    During the COVID-19 pandemic, the number of house sales in the UK spiked, followed by a period of decline. In 2023 and 2024, the housing market slowed notably, and in January 2025, transaction volumes fell to 46,774. House sales volumes are impacted by a number of factors, including mortgage rates, house prices, supply, demand, as well as the overall health of the market. The economic uncertainty and rising unemployment rates has also affected the homebuyer sentiment of Brits. How have UK house prices developed over the past 10 years? House prices in the UK have increased year-on-year since 2015, except for a brief period of decline in the second half of 2023 and the beginning of 2024. That is based on the 12-month percentage change of the UK house price index. At the peak of the housing boom in 2022, prices soared by nearly 14 percent. The decline that followed was mild, at under three percent. The cooling in the market was more pronounced in England and Wales, where the average house price declined in 2023. Conversely, growth in Scotland and Northern Ireland continued. What is the impact of mortgage rates on house sales? For a long period, mortgage rates were at record-low, allowing prospective homebuyers to take out a 10-year loan at a mortgage rate of less than three percent. In the last quarter of 2021, this period came to an end as the Bank of England rose the bank lending rate to contain the spike in inflation. Naturally, the higher borrowing costs affected consumer sentiment, urging many homebuyers to place their plans on hold and leading to a decline in sales.

  15. a

    Tax Parcels Vacant Land- Live

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Tax Parcels Vacant Land- Live [Dataset]. https://hub.arcgis.com/maps/RochesterNY::tax-parcels-vacant-land-live
    Explore at:
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    Dataset SummaryPlease note: this data is live (updated nightly) to reflect the latest changes in the City's systems of record.About this data:The operational purpose of the vacant land dataset is to facilitate the tracking and mapping of vacant land for the purposes of promoting redevelopment of lots to increase the City's tax base and spur increased economic activity. These properties are both City owned and privately owned. The vast majority of vacant lots are the result of a demolition of a structure that once stood on the property. Vacant lots are noted in the official tax parcel assessment records with a class code beginning with 3, which denotes the category vacant land.Related Resources:For a searchable interactive mapping application, please visit the City of Rochester's Property Information explorer tool. For further information about the city's property tax assessments, please contact the City of Rochester Assessment Bureau. To access the City's zoning code, please click here.Data Dictionary: SBL: The twenty-digit unique identifier assigned to a tax parcel. PRINTKEY: A unique identifier for a tax parcel, typically in the format of “Tax map section – Block – Lot". Street Number: The street number where the tax parcel is located. Street Name: The street name where the tax parcel is located. NAME: The street number and street name for the tax parcel. City: The city where the tax parcel is located. Property Class Code: The standardized code to identify the type and/or use of the tax parcel. For a full list of codes, view the NYS Real Property System (RPS) property classification codes guide. Property Class: The name of the property class associated with the property class code. Property Type: The type of property associated with the property class code. There are nine different types of property according to RPS: 100: Agricultural 200: Residential 300: Vacant Land 400: Commercial 500: Recreation & Entertainment 600: Community Services 700: Industrial 800: Public Services 900: Wild, forested, conservation lands and public parks First Owner Name: The name of the property owner of the vacant tax parcel. If there are multiple owners, then the first one is displayed. Postal Address: The USPS postal address for the vacant landowner. Postal City: The USPS postal city, state, and zip code for the vacant landowner. Lot Frontage: The length (in feet) of how wide the lot is across the street. Lot Depth: The length (in feet) of how far the lot goes back from the street. Stated Area: The area of the vacant tax parcel. Current Land Value: The current value (in USD) of the tax parcel. Current Total Assessed Value: The current value (in USD) assigned by a tax assessor, which takes into consideration both the land value, buildings on the land, etc. Current Taxable Value: The amount (in USD) of the assessed value that can be taxed. Tentative Land Value: The current value (in USD) of the land on the tax parcel, subject to change based on appeals, reassessments, and public review. Tentative Total Assessed Value: The preliminary estimate (in USD) of the tax parcel’s assessed value, which includes tentative land value and tentative improvement value. Tentative Taxable Value: The preliminary estimate (in USD) of the tax parcel’s value used to calculate property taxes. Sale Date: The date (MM/DD/YYYY) of when the vacant tax parcel was sold. Sale Price: The price (in USD) of what the vacant tax parcel was sold for. Book: The record book that the property deed or sale is recorded in. Page: The page in the record book where the property deed or sale is recorded in. Deed Type: The type of deed associated with the vacant tax parcel sale. RESCOM: Notes whether the vacant tax parcel is zoned for residential or commercial use. R: Residential C: Commercial BISZONING: Notes the zoning district the vacant tax parcel is in. For more information on zoning, visit the City’s Zoning District map. OWNERSHIPCODE: Code to note type of ownership (if applicable). Number of Residential Units: Notes how many residential units are available on the tax parcel (if applicable). LOW_STREET_NUM: The street number of the vacant tax parcel. HIGH_STREET_NUM: The street number of the vacant tax parcel. GISEXTDATE: The date and time when the data was last updated. SALE_DATE_datefield: The recorded date of sale of the vacant tax parcel (if available). Source: This data comes from the department of Neighborhood and Business Development, Bureau of Business and Zoning.

  16. C

    Property Sales Data

    • data.milwaukee.gov
    csv
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Assessor's Office (2025). Property Sales Data [Dataset]. https://data.milwaukee.gov/dataset/property-sales-data
    Explore at:
    csv(949709), csv(635017), csv(19324), csv(42822), csv(229224), csv(34325), csv(507943), csv(425413), csv(3975005), csv(50434), csv(775983), csv(26978), csv(201294), csv(338764), csv(20614), csv(557038), csv(816529), csv(340253), csv(892761), csv(34804), csv(868351), csv(315750), csv(219127), csv(742724), csv(233505)Available download formats
    Dataset updated
    Sep 17, 2025
    Dataset authored and provided by
    Assessor's Office
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Update Frequency: Yearly

    Access to Residential, Condominium, Commercial, Apartment properties and vacant land sales history data.

    To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page.

  17. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  18. a

    Land Parcels

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • yourdata.wycokck.org
    • +1more
    Updated Jul 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UGADMIN (2016). Land Parcels [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/unifiedgov::land-parcels/about
    Explore at:
    Dataset updated
    Jul 29, 2016
    Dataset authored and provided by
    UGADMIN
    Area covered
    Description

    Land Parcels mapped with Parcel Number and Acreage.By using this dataset you acknowledge the following:Kansas Open Records Act StatementThe Kansas Open Records Act provides in K.S.A. 45-230 that "no person shall knowingly sell, give or receive, for the purpose of selling or offering for sale, any property or service to persons listed therein, any list of names and addresses contained in, or derived from public records..." Violation of this law may subject the violator to a civil penalty of $500.00 for each violation. Violators will be reported for prosecution.By accessing this site, the user makes the following certification pursuant to K.S.A. 45-220(c)(2): "The requester does not intend to, and will not: (A) Use any list of names or addresses contained in or derived from the records or information for the purpose of selling or offering for sale any property or service to any person listed or to any person who resides at any address listed; or (B) sell, give or otherwise make available to any person any list of names or addresses contained in or derived from the records or information for the purpose of allowing that person to sell or offer for sale any property or service to any person listed or to any person who resides at any address listed."

  19. F

    All-Transactions House Price Index for California

    • fred.stlouisfed.org
    json
    Updated Aug 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for California [Dataset]. https://fred.stlouisfed.org/series/CASTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    California
    Description

    Graph and download economic data for All-Transactions House Price Index for California (CASTHPI) from Q1 1975 to Q2 2025 about appraisers, CA, HPI, housing, price index, indexes, price, and USA.

  20. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Mar 7, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - Jul 31, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 433.40 points in July from 433.90 points in June of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Allegheny County (2025). Allegheny County Property Sale Transactions [Dataset]. https://data.wprdc.org/dataset/real-estate-sales

Allegheny County Property Sale Transactions

Explore at:
csv, htmlAvailable download formats
Dataset updated
Oct 11, 2025
Dataset authored and provided by
Allegheny County
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Area covered
Allegheny County
Description

This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.

Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.

Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.

Search
Clear search
Close search
Google apps
Main menu