Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices for existing dwellings, by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Price to Income Ratio: sa data was reported at 130.892 2015=100 in 2024. This records an increase from the previous number of 129.315 2015=100 for 2023. United States US: Price to Income Ratio: sa data is updated yearly, averaging 113.539 2015=100 from Dec 1970 (Median) to 2024, with 55 observations. The data reached an all-time high of 132.929 2015=100 in 1979 and a record low of 90.287 2015=100 in 2012. United States US: Price to Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database.
In Omaha, NE, more than 25 GI projects have been completed to date, with several featuring GI practices in public parks. Using a repeat sales model , we examined the effect of GI on the value of nearby single-family homes, based on housing sales and characteristic data from 2000 to 2018. We evaluated the sales price for homes using a buffer zone of 0-0.5km, and three additional models: homes within 0-0.25km, 0.25-0.5km, and greater than 0.5km from parks where GI was installed for 25,472 sale pairs. In addition to the repeat sales model, we performed a hot spot analysis on several demographic characteristics to capture systematic differences at a smaller spatial scale and over a longer time period than the repeat sales model could capture. We used US Census data on race and household income to examine changing patterns over time and space, and a spatial lag Maximum Likelihood Estimation model to determine if the location of GI correlated with either of these demographics. This dataset is associated with the following publication: Hoover, F., J. Price, and M. Hopton. Examining the Effects of Green Infrastructure on Residential Sales Prices in Omaha, NE. Urban Forestry & Urban Greening. Elsevier B.V., Amsterdam, NETHERLANDS, 54: 126778, (2020).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan JP: Standardised Price-Income Ratio: sa data was reported at 87.536 Ratio in 2024. This records a decrease from the previous number of 89.289 Ratio for 2023. Japan JP: Standardised Price-Income Ratio: sa data is updated yearly, averaging 113.262 Ratio from Dec 1960 (Median) to 2024, with 65 observations. The data reached an all-time high of 163.202 Ratio in 1973 and a record low of 73.471 Ratio in 2009. Japan JP: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Japan – Table JP.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
This dataset is created via OECD datasource which is consisted of 2000 between 2020. https://data.oecd.org/price/housing-prices.htm
The housing prices indicator shows indices of residential property prices over time. Included are rent prices, real and nominal house prices, and ratios of price to rent and price to income; the main elements of housing costs. In most cases, the nominal house price covers the sale of newly-built and existing dwellings, following the recommendations from RPPI (Residential Property Prices Indices) manual. The real house price is given by the ratio of nominal price to the consumers’ expenditure deflator in each country, both seasonally adjusted, from the OECD national accounts database. The price to income ratio is the nominal house price divided by the nominal disposable income per head and can be considered as a measure of affordability. The price to rent ratio is the nominal house price divided by the rent price and can be considered as a measure of the profitability of house ownership. This indicator is an index with base year 2015.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Standardised Price-Income Ratio: sa data was reported at 149.268 Ratio in Dec 2024. This records a decrease from the previous number of 152.371 Ratio for Sep 2024. Australia Standardised Price-Income Ratio: sa data is updated quarterly, averaging 82.643 Ratio from Mar 1970 (Median) to Dec 2024, with 220 observations. The data reached an all-time high of 153.422 Ratio in Jun 2024 and a record low of 62.554 Ratio in Sep 1983. Australia Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Australia – Table AU.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Quarterly. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual workplace-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
The Global Housing Watch tracks developments in housing markets across the world on a quarterly basis. It provides current data on house prices as well as metrics used to assess valuation in housing markets, such as house price‑to‑rent and house-price‑to‑income ratios.
This collection includes only a subset of indicators from the source dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ Zillow Housing Aspirations Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/zillow-housing-aspirations-reporte on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Additional Data Products
Product: Zillow Housing Aspirations Report
Date: April 2017
Definitions
Home Types and Housing Stock
- All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
- Condo/Co-op: Condominium and co-operative homes.
- Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
- Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.
Additional Data Products
- Zillow Home Value Forecast (ZHVF): The ZHVF is the one-year forecast of the ZHVI. Our forecast methodology is methodology post.
- Zillow creates our negative equity data using our own data in conjunction with data received through our partnership with TransUnion, a leading credit bureau. We match estimated home values against actual outstanding home-related debt amounts provided by TransUnion. To read more about how we calculate our negative equity metrics, please see our here.
- Cash Buyers: The share of homes in a given area purchased without financing/in cash. To read about how we calculate our cash buyer data, please see our research brief.
- Mortgage Affordability, Rental Affordability, Price-to-Income Ratio, Historical ZHVI, Historical ZHVI and Houshold Income are calculated as a part of Zillow’s quarterly Affordability Indices. To calculate mortgage affordability, we first calculate the mortgage payment for the median-valued home in a metropolitan area by using the metro-level Zillow Home Value Index for a given quarter and the 30-year fixed mortgage interest rate during that time period, provided by the Freddie Mac Primary Mortgage Market Survey (based on a 20 percent down payment). Then, we consider what portion of the monthly median household income (U.S. Census) goes toward this monthly mortgage payment. Median household income is available with a lag. For quarters where median income is not available from the U.S. Census Bureau, we calculate future quarters of median household income by estimating it using the Bureau of Labor Statistics’ Employment Cost Index. The affordability forecast is calculated similarly to the current affordability index but uses the one year Zillow Home Value Forecast instead of the current Zillow Home Value Index and a specified interest rate in lieu of PMMS. It also assumes a 20 percent down payment. We calculate rent affordability similarly to mortgage affordability; however we use the Zillow Rent Index, which tracks the monthly median rent in particular geographical regions, to capture rental prices. Rents are chained back in time by using U.S. Census Bureau American Community Survey data from 2006 to the start of the Zillow Rent Index, and Decennial Census for all other years.
- The mortgage rate series is the average mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate mortgage in 15-minute increments during business hours, 6:00 AM to 5:00 PM Pacific. It does not include quotes for jumbo loans, FHA loans, VA loans, loans with mortgage insurance or quotes to consumers with credit scores below 720. Federal holidays are excluded. The jumbo mortgage rate series is the average jumbo mortgage rate quoted on Zillow Mortgages for a 30-year, fixed-rate, jumbo mortgage in one-hour increments during business hours, 6:00 AM to 5:00 PM Pacific Time. It does not include quotes to consumers with credit scores below 720. Traditional federal holidays and hours with insufficient sample sizes are excluded.
About Zillow Data (and Terms of Use Information)
- Zillow is in the process of transitioning some data sources with the goal of producing published data that is more comprehensive, reliable, accurate and timely. As this new data is incorporated, the publication of select metrics may be delayed or temporarily suspended. We look forward to resuming our usual publication schedule for all of our established datasets as soon as possible, and we apologize for any inconvenience. Thank you for your patience and understanding.
- All data accessed and downloaded from this page is free for public use by consumers, media, analysts, academics etc., consistent with our published Terms of Use. Proper and clear attribution of all data to Zillow is required.
- For other data requests or inquiries for Zillow Real Estate Research, contact us here.
- All files are time series unless noted otherwise.
- To download all Zillow metrics for specific levels of geography, click here.
- To download a crosswalk between Zillow regions and federally defined regions for counties and metro areas, click here.
- Unless otherwise noted, all series cover single-family residences, condominiums and co-op homes only.
Source: https://www.zillow.com/research/data/
This dataset was created by Zillow Data and contains around 200 samples along with Unnamed: 1, Unnamed: 0, technical information and other features such as: - Unnamed: 1 - Unnamed: 0 - and more.
- Analyze Unnamed: 1 in relation to Unnamed: 0
- Study the influence of Unnamed: 1 on Unnamed: 0
- More datasets
If you use this dataset in your research, please credit Zillow Data
--- Original source retains full ownership of the source dataset ---
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
About this file add_comment Add Suggestion The California housing dataset contains information on various socio-economic features of block groups in California. Each row in the dataset represents a single block group, and there are 20,640 observations, each with 10 attributes.The Features are as follows: 1.Longitude: The longitude of the center of each block group in California. 2.Latitude: The latitude of the center of each block group in California. 3.Housing Median Age: The median age of the housing units in each block group. 4.Total Rooms: The total number of rooms in the housing units in each block group. 5.Total Bedrooms: The total number of bedrooms in the housing units in each block group. 6.Population: The total population of the block group. 7.Households: The total number of households in the block group. 8.Median Income: The median income of the block group. 9.Median House Value: The median value of the housing units in the block group. 10.Ocean Proximity: The proximity of the block group to the ocean or other bodies of water. Table
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This project combines data extraction, predictive modeling, and geospatial mapping to analyze housing trends in Mercer County, New Jersey. It consists of three core components: Census Data Extraction: Gathers U.S. Census data (2012–2022) on median house value, household income, and racial demographics for all census tracts in the county. It accounts for changes in census tract boundaries between 2010 and 2020 by approximating values for newly defined tracts. House Value Prediction: Uses an LSTM model with k-fold cross-validation to forecast median house values through 2025. Multiple feature combinations and sequence lengths are tested to optimize prediction accuracy, with the final model selected based on MSE and MAE scores. Data Mapping: Visualizes historical and predicted housing data using GeoJSON files from the TIGERWeb API. It generates interactive maps showing raw values, changes over time, and percent differences, with customization options to handle outliers and improve interpretability. This modular workflow can be adapted to other regions by changing the input FIPS codes and feature selections.
The purpose of this study was to understand the relationship between happiness and housing prices in Canada. The happiness data were obtained from the General Social Survey between 2009 and 2013, asking respondents to report overall happiness level by using scale ranging between 1 to 10 points. House Price Indexes at the provincial level were constructed to cover the same period. The relationship between average house price change and average happiness was estimated using Ordinary Least Square and Logistic Regression techniques. Individual's characteristics were used as control variables. The study found that average happiness level is positively and significantly related to the change in housing prices for one group and not for another - for homeowners but not for renters. In addition, individuals with better health are much happier than individuals with poor health. Similarly, individuals with higher income are happier than individuals with less income. The implication of this study is that the government should design attractive policies to encourage homeownerships.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Standardised Price-Income Ratio: sa data was reported at 88.538 Ratio in 2024. This records a decrease from the previous number of 93.578 Ratio for 2023. Germany DE: Standardised Price-Income Ratio: sa data is updated yearly, averaging 95.901 Ratio from Dec 1980 (Median) to 2024, with 45 observations. The data reached an all-time high of 146.141 Ratio in 1981 and a record low of 76.343 Ratio in 2010. Germany DE: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Germany – Table DE.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
This table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough.
The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings.
Pre-2013 Land Registry housing data are for the first half of the year only, so that they are comparable to the ASHE data which are as at April. This is no longer the case from 2013 onwards as this data uses house price data from the ONS House Price Statistics for Small Areas statistical release. Prior to 2006 data are not available for Inner and Outer London.
The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile.
The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order.
The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median.
Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data since 2014 has been calculated by the GLA using Land Registry house prices and ONS Earnings data.
Link to DCLG Live Tables
An interactive map showing the affordability ratios by local authority for 2013, 2014 and 2015 is also available.
This layer was developed for public use of the most current median household income, median home value and median owner-occupied residential real estate taxes compiled by the US Census Bureau from the 2017 to 2021 American Community Survey at the Census Tract (neighborhood) level.
All data are 2020 Census Tract (neighborhood) level five-year estimates from the U.S. Census Bureau American Community Survey from 2017 to 2021. Median household income earned in the past 12 months. Includes wage or salary income; net self-employment income; interest, dividends, or net rental or royalty income or income from estates and trusts; Social Security or Railroad Retirement income; Supplemental Security Income (SSI); public assistance or welfare payments; retirement, survivor, or disability pensions; and all other income. Median home value (an estimate of how much the property would sell for if it were for sale) for properties owned, being bought, vacant for sale, or sold but not occupied at the time of the survey. Data are based on values reported by property owners. Median real estate taxes (due to all taxing jurisdictions) for owner-occupied properties are based on taxes reported by homeowners to the Census Bureau in the American Community Survey from 2017 to 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Norway NO: Price to Income Ratio: sa data was reported at 109.547 2015=100 in Mar 2025. This records an increase from the previous number of 108.324 2015=100 for Dec 2024. Norway NO: Price to Income Ratio: sa data is updated quarterly, averaging 81.128 2015=100 from Mar 1978 (Median) to Mar 2025, with 189 observations. The data reached an all-time high of 117.142 2015=100 in Mar 2022 and a record low of 50.333 2015=100 in Mar 1993. Norway NO: Price to Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Norway – Table NO.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Quarterly. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database.
Commercial valuation data collected and maintained by the Cook County Assessor's Office, from 2021 to present. The office uses this data primarily for valuation and reporting. This dataset consolidates the individual Excel workbooks available on the Assessor's website into a single shared format. Properties are valued using similar valuation methods within each model group, per township, per year (in the year the township is reassessed). This dataset has been cleaned minimally, only enough to fit the source Excel workbooks together - because models are updated for each township in the year it is reassessed, users should expect inconsistencies within columns across time and townships. When working with Parcel Index Numbers (PINs) make sure to zero-pad them to 14 digits. Some datasets may lose leading zeros for PINs when downloaded. This data is property-level. Each 14-digit key PIN represents one commercial property. Commercial properties can and often do encompass multiple PINs. Additional notes: Current property class codes, their levels of assessment, and descriptions can be found on the Assessor's website. Note that class codes details can change across time. Data will be updated yearly, once the Assessor has finished mailing first pass values. If users need more up-to-date information they can access it through the Assessor's website. The Assessor's Office reassesses roughly one third of the county (a triad) each year. For commercial valuations, this means each year of data only contain the triad that was reassessed that year. Which triads and their constituent townships have been reassessed recently as well the year of their reassessment can be found in the Assessor's assessment calendar. One KeyPIN is one Commercial Entity. Each KeyPIN (entity) can be comprised of one single PIN (parcel), or multiple PINs as designated in the pins column. Additionally, each KeyPIN might have multiple rows if it is associated with different class codes or model groups. This can occur because many of Cook County's parcels have multiple class codes associated with them if they have multiple uses (such as residential and commercial). Users should not expect this data to be unique by any combination of available columns. Commercial properties are calculated by first determining a property’s use (office, retail, apartments, industrial, etc.), then the property is grouped with similar or like-kind property types. Next, income generated by the property such as rent or incidental income streams like parking or advertising signage is examined. Next, market-level vacancy based on location and property type is examined. In addition, new construction that has not yet been leased is also considered. Finally, expenses such as property taxes, insurance, repair and maintenance costs, property management fees, and service expenditures for professional services are examined. Once a snapshot of a property’s income statement is captured based on market data, a standard valuation metric called a “capitalization rate” to convert income to value is applied. This data was used to produce initial valuations mailed to property owners. It does not incorporate any subsequent changes to a property’s class, characteristics, valuation, or assessed value from appeals.Township codes can be found in the legend of this map. For more information on the sourcing of attached data and the preparation of this datase
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France FR: Standardised Price-Income Ratio: sa data was reported at 107.604 Ratio in 2024. This records a decrease from the previous number of 116.870 Ratio for 2023. France FR: Standardised Price-Income Ratio: sa data is updated yearly, averaging 92.480 Ratio from Dec 1978 (Median) to 2024, with 47 observations. The data reached an all-time high of 126.864 Ratio in 2022 and a record low of 71.463 Ratio in 1998. France FR: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s France – Table FR.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
The data set contains the income measures of Schleswig-Holstein, which are required for the declaration for the determination of the property tax value for agricultural and forestry use (property tax A). The income measures do not apply to property tax B. The data required for this are contained in the data set "Ground benchmarks for property tax".
Data Axle (formerly known as Infogroup) Consumer Historical data consists of information about households within the United States, including aspects like household income, home value, years in residence and location. For the full list of variables, see the data dictionary provided.
The data is compiled from data provided by more than 100 sources including real estate, tax assessments, voter registrations, utility connections, bill processors and more. The historical files are available from 2006 to 2024. New data are added each calendar year. This metadata record and the documentation for the dataset will be updated every year.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices for existing dwellings, by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.