30 datasets found
  1. Estimated number of homeless people in the U.S. 2007-2023

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Estimated number of homeless people in the U.S. 2007-2023 [Dataset]. https://www.statista.com/statistics/555795/estimated-number-of-homeless-people-in-the-us/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, there were about ******* homeless people estimated to be living in the United States, the highest number of homeless people recorded within the provided time period. In comparison, the second-highest number of homeless people living in the U.S. within this time period was in 2007, at *******. How is homelessness calculated? Calculating homelessness is complicated for several different reasons. For one, it is challenging to determine how many people are homeless as there is no direct definition for homelessness. Additionally, it is difficult to try and find every single homeless person that exists. Sometimes they cannot be reached, leaving people unaccounted for. In the United States, the Department of Housing and Urban Development calculates the homeless population by counting the number of people on the streets and the number of people in homeless shelters on one night each year. According to this count, Los Angeles City and New York City are the cities with the most homeless people in the United States. Homelessness in the United States Between 2022 and 2023, New Hampshire saw the highest increase in the number of homeless people. However, California was the state with the highest number of homeless people, followed by New York and Florida. The vast amount of homelessness in California is a result of multiple factors, one of them being the extreme high cost of living, as well as opposition to mandatory mental health counseling and drug addiction. However, the District of Columbia had the highest estimated rate of homelessness per 10,000 people in 2023. This was followed by New York, Vermont, and Oregon.

  2. Rate of homelessness in the U.S. 2023, by state

    • statista.com
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rate of homelessness in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/727847/homelessness-rate-in-the-us-by-state/
    Explore at:
    Dataset updated
    Feb 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The  number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.

  3. c

    Top 15 States by Estimated Number of Homeless People in 2024

    • consumershield.com
    csv
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Top 15 States by Estimated Number of Homeless People in 2024 [Dataset]. https://www.consumershield.com/articles/how-many-homeless-us
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The graph displays the top 15 states by an estimated number of homeless people in the United States for the year 2025. The x-axis represents U.S. states, while the y-axis shows the number of homeless individuals in each state. California has the highest homeless population with 187,084 individuals, followed by New York with 158,019, while Hawaii places last in this dataset with 11,637. This bar graph highlights significant differences across states, with some states like California and New York showing notably higher counts compared to others, indicating regional disparities in homelessness levels across the country.

  4. c

    Number of Homeless People in U.S. (2007-2024)

    • consumershield.com
    csv
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Number of Homeless People in U.S. (2007-2024) [Dataset]. https://www.consumershield.com/articles/how-many-homeless-us
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The graph displays the estimated number of homeless people in the United States from 2007 to 2024. The x-axis represents the years, ranging from 2007 to 2023, while the y-axis indicates the number of homeless individuals. The estimated homeless population varies over this period, ranging from a low of 57,645 in 2014 to a high of 771,000 in 2024. From 2007 to 2013, there is a general decline in numbers from 647,258 to 590,364. In 2014, the number drops significantly to 57,645, followed by an increase to 564,708 in 2015. The data shows fluctuations in subsequent years, with another notable low of 55,283 in 2018. From 2019 onwards, the estimated number of homeless people generally increases, reaching its peak in 2024. This data highlights fluctuations in homelessness estimates over the years, with a recent upward trend in the homeless population.

  5. Number of homeless people in the U.S. 2023, by race

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of homeless people in the U.S. 2023, by race [Dataset]. https://www.statista.com/statistics/555855/number-of-homeless-people-in-the-us-by-race/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, there were an estimated ******* white homeless people in the United States, the most out of any ethnicity. In comparison, there were around ******* Black or African American homeless people in the U.S. How homelessness is counted The actual number of homeless individuals in the U.S. is difficult to measure. The Department of Housing and Urban Development uses point-in-time estimates, where employees and volunteers count both sheltered and unsheltered homeless people during the last 10 days of January. However, it is very likely that the actual number of homeless individuals is much higher than the estimates, which makes it difficult to say just how many homeless there are in the United States. Unsheltered homeless in the United States California is well-known in the U.S. for having a high homeless population, and Los Angeles, San Francisco, and San Diego all have high proportions of unsheltered homeless people. While in many states, the Department of Housing and Urban Development says that there are more sheltered homeless people than unsheltered, this estimate is most likely in relation to the method of estimation.

  6. List_of_countries_by_homeless_population

    • kaggle.com
    zip
    Updated Jul 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathurin Aché (2020). List_of_countries_by_homeless_population [Dataset]. https://www.kaggle.com/mathurinache/list-of-countries-by-homeless-population
    Explore at:
    zip(1722 bytes)Available download formats
    Dataset updated
    Jul 17, 2020
    Authors
    Mathurin Aché
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is extracted from https://en.wikipedia.org/wiki/List_of_countries_by_homeless_population. Context: There s a story behind every dataset and heres your opportunity to share yours.Content: What s inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Acknowledgements:We wouldn t be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.Inspiration: Your data will be in front of the world s largest data science community. What questions do you want to see answered?

  7. Global number of people left homeless by wildfires 1990-2023

    • statista.com
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global number of people left homeless by wildfires 1990-2023 [Dataset]. https://www.statista.com/statistics/1423747/global-number-of-homeless-people-due-to-wildfires/
    Explore at:
    Dataset updated
    Jun 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The number of people left homeless due to wildfires in 2023 amounted to **, a considerable decrease when compared to the figures of 2022 and 2021, when ***** and ***** people lost their homes due to such disasters.

  8. Establishing need and population priorities to improve the health of...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esther S. Shoemaker; Claire E. Kendall; Christine Mathew; Sarah Crispo; Vivian Welch; Anne Andermann; Sebastian Mott; Christine Lalonde; Gary Bloch; Alain Mayhew; Tim Aubry; Peter Tugwell; Vicky Stergiopoulos; Kevin Pottie (2023). Establishing need and population priorities to improve the health of homeless and vulnerably housed women, youth, and men: A Delphi consensus study [Dataset]. http://doi.org/10.1371/journal.pone.0231758
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Esther S. Shoemaker; Claire E. Kendall; Christine Mathew; Sarah Crispo; Vivian Welch; Anne Andermann; Sebastian Mott; Christine Lalonde; Gary Bloch; Alain Mayhew; Tim Aubry; Peter Tugwell; Vicky Stergiopoulos; Kevin Pottie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundHomelessness is one of the most disabling and precarious living conditions. The objective of this Delphi consensus study was to identify priority needs and at-risk population subgroups among homeless and vulnerably housed people to guide the development of a more responsive and person-centred clinical practice guideline.MethodsWe used a literature review and expert working group to produce an initial list of needs and at-risk subgroups of homeless and vulnerably housed populations. We then followed a modified Delphi consensus method, asking expert health professionals, using electronic surveys, and persons with lived experience of homelessness, using oral surveys, to prioritize needs and at-risk sub-populations across Canada. Criteria for ranking included potential for impact, extent of inequities and burden of illness. We set ratings of ≥ 60% to determine consensus over three rounds of surveys.FindingsEighty four health professionals and 76 persons with lived experience of homelessness participated from across Canada, achieving an overall 73% response rate. The participants identified priority needs including mental health and addiction care, facilitating access to permanent housing, facilitating access to income support and case management/care coordination. Participants also ranked specific homeless sub-populations in need of additional research including: Indigenous Peoples (First Nations, Métis, and Inuit); youth, women and families; people with acquired brain injury, intellectual or physical disabilities; and refugees and other migrants.InterpretationThe inclusion of the perspectives of both expert health professionals and people with lived experience of homelessness provided validity in identifying real-world needs to guide systematic reviews in four key areas according to priority needs, as well as launch a number of working groups to explore how to adapt interventions for specific at-risk populations, to create evidence-based guidelines.

  9. g

    Point in Time counts of homeless populations by Continuum of Care (CoC) Area...

    • covid-hub.gio.georgia.gov
    Updated Mar 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2019). Point in Time counts of homeless populations by Continuum of Care (CoC) Area [Dataset]. https://covid-hub.gio.georgia.gov/datasets/UrbanObservatory::point-in-time-counts-of-homeless-populations-by-continuum-of-care-coc-area
    Explore at:
    Dataset updated
    Mar 18, 2019
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Description

    This layer contains detailed Point in Time counts of homeless populations from 2018, 2013, and 2008. A 2019 version is now available!Layer is symbolized to show the count of the overall homeless population in 2018, with overall counts from 2008 and 2013 in the pop-up, as well as a pie chart of breakdown of type of shelter. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. The Point-in-Time (PIT) count is a count of sheltered and unsheltered homeless persons on a single night in January. HUD requires that Continuums of Care Areas (CoCs) conduct an annual count of homeless persons who are sheltered in emergency shelter, transitional housing, and Safe Havens on a single night. CoCs also must conduct a count of unsheltered homeless persons every other year (odd numbered years). Each count is planned, coordinated, and carried out locally.The Point-in-Time values were retrieved from HUD's Historical Data site. The 2018, 2013, and 2008 sheets within the "2007 - 2018 PIT Counts within CoCs.xlsx" (downloaded on 2/7/2019) file were combined and joined to the CoC boundaries available from HUD's Open Data site. As noted in the "Mergers" sheet in the PIT Excel file, some CoC Areas have merged over the years. Use caution when comparing numbers in these CoCs across years. Data note: MO-604 covers territory in both Missouri and Kansas. The record described in this file represents the CoC's total territory, the sum of the point-in-time estimates the CoC separately reported for the portions of its territory in MO and in KS.For more information and attributes on the CoC Areas themselves, including contact information, see this accompanying layer.Suggested Citation: U.S. Department of Housing and Urban Development (HUD)'s Point in Time (PIT) counts for Continuum of Care Grantee Areas, accessed via ArcGIS Living Atlas of the World on (date).

  10. w

    Global Transitional Housing Service Market Research Report: By Service Type...

    • wiseguyreports.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Transitional Housing Service Market Research Report: By Service Type (Emergency Shelters, Supportive Housing, Moving Assistance, Temporary Housing), By Target Population (Homeless Individuals, Domestic Violence Survivors, Substance Abuse Recoverers, Veterans), By Funding Source (Government Funding, Non-Profit Organizations, Private Donations, Grants), By Duration of Stay (Short-Term, Medium-Term, Long-Term) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/transitional-housing-service-market
    Explore at:
    Dataset updated
    Oct 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.48(USD Billion)
    MARKET SIZE 20252.64(USD Billion)
    MARKET SIZE 20355.0(USD Billion)
    SEGMENTS COVEREDService Type, Target Population, Funding Source, Duration of Stay, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSRising homelessness rates, Government funding initiatives, Increasing demand for temporary housing, Growing awareness of housing instability, Shift towards supportive services integration
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDWalnut Street, Homeward Bound, Pathways to Housing, Rapid ReHousing, Trellis, Bridge Housing, USA Cares, Family Promise, The Salvation Army, Shelterbox, Common Ground, Supportive Housing Services, Interstate Realty Management
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased demand for affordable housing, Government support for transitional programs, Rise in homelessness and displacement, Expansion of mental health services, Collaborations with non-profit organizations
    COMPOUND ANNUAL GROWTH RATE (CAGR) 6.6% (2025 - 2035)
  11. i

    Grant Giving Statistics for World Aid for Homeless Children Incorported

    • instrumentl.com
    Updated Oct 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Grant Giving Statistics for World Aid for Homeless Children Incorported [Dataset]. https://www.instrumentl.com/990-report/world-aid-for-homeless-children-incorported
    Explore at:
    Dataset updated
    Oct 17, 2021
    Description

    Financial overview and grant giving statistics of World Aid for Homeless Children Incorported

  12. Homeless Point in Time Count, 2019, by Continuum of Care (CoC) Area

    • coronavirus-resources.esri.com
    • anrgeodata.vermont.gov
    • +1more
    Updated Mar 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Homeless Point in Time Count, 2019, by Continuum of Care (CoC) Area [Dataset]. https://coronavirus-resources.esri.com/datasets/4b8902a3093f451ca9f326be3b731b09
    Explore at:
    Dataset updated
    Mar 11, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This layer contains detailed Point in Time counts of homeless populations from 2019. This layer is modeled after a similar layer that contains data for 2018, 2013, and 2008.Layer is symbolized to show the count of the overall homeless population in 2019, with a pie chart of breakdown of type of shelter. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. The Point-in-Time (PIT) count is a count of sheltered and unsheltered homeless persons on a single night in January. HUD requires that Continuums of Care Areas (CoCs) conduct an annual count of homeless persons who are sheltered in emergency shelter, transitional housing, and Safe Havens on a single night. CoCs also must conduct a count of unsheltered homeless persons every other year (odd numbered years). Each count is planned, coordinated, and carried out locally.The Point-in-Time values were retrieved from HUD's Historical Data site. Original source is the 2019 sheet within the "2007 - 2019 PIT Counts by CoCs.xlsx" (downloaded on 3/10/2020) file. Key fields were kept and joined to the CoC boundaries available from HUD's Open Data site.Data note: MO-604 covers territory in both Missouri and Kansas. The record described in this file represents the CoC's total territory, the sum of the point-in-time estimates the CoC separately reported for the portions of its territory in MO and in KS.For more information and attributes on the CoC Areas themselves, including contact information, see this accompanying layer.Suggested Citation: U.S. Department of Housing and Urban Development (HUD)'s Point in Time (PIT) 2019 counts for Continuum of Care Grantee Areas, accessed via ArcGIS Living Atlas of the World on (date).

  13. e

    Homeless Point in Time Count, 2019, by Continuum of Care (CoC) Area

    • coronavirus-resources.esri.com
    • anrgeodata.vermont.gov
    • +1more
    Updated Mar 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Homeless Point in Time Count, 2019, by Continuum of Care (CoC) Area [Dataset]. https://coronavirus-resources.esri.com/maps/4f18bc402faa44f6a94dfff113b59d38
    Explore at:
    Dataset updated
    Mar 11, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Description

    This map shows Point in Time counts of the overall homeless populations from 2019. Layer is symbolized to show the count of the overall homeless population in 2019, with a pie chart of breakdown of type of shelter. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. The Point-in-Time (PIT) count is a count of sheltered and unsheltered homeless persons on a single night in January. HUD requires that Continuums of Care Areas (CoCs) conduct an annual count of homeless persons who are sheltered in emergency shelter, transitional housing, and Safe Havens on a single night. CoCs also must conduct a count of unsheltered homeless persons every other year (odd numbered years). Each count is planned, coordinated, and carried out locally.The Point-in-Time values were retrieved from HUD's Historical Data site. Original source is the 2019 sheet within the "2007 - 2019 PIT Counts by CoCs.xlsx" (downloaded on 3/10/2020) file. Key fields were kept and joined to the CoC boundaries available from HUD's Open Data site.Data note: MO-604 covers territory in both Missouri and Kansas. The record described in this file represents the CoC's total territory, the sum of the point-in-time estimates the CoC separately reported for the portions of its territory in MO and in KS.For more information and attributes on the CoC Areas themselves, including contact information, see this accompanying layer.Suggested Citation: U.S. Department of Housing and Urban Development (HUD)'s Point in Time (PIT) 2019 counts for Continuum of Care Grantee Areas, accessed via ArcGIS Living Atlas of the World on (date).

  14. S1 File -

    • plos.figshare.com
    bin
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benedict Osei Asibey; Brahmaputra Marjadi; Elizabeth Conroy (2023). S1 File - [Dataset]. http://doi.org/10.1371/journal.pone.0281107.s002
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Benedict Osei Asibey; Brahmaputra Marjadi; Elizabeth Conroy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundSubstance use contributes to poor health and increases the risk of mortality in the homeless population. This study assessed the prevalence and risk levels of substance use and associated factors among adults experiencing homelessness in Accra, Ghana.Methods305 adults currently experiencing sheltered and unsheltered homelessness in Accra aged ≥ 18 years were recruited. The World Health Organization’s (WHO) Alcohol, Smoking, and Substance Involvement Screening Test (ASSIST) was used to assess substance use risk levels. Association of high-risk substance use with sociodemographic, migration, homelessness, and health characteristics were assessed using logistic regression.ResultsNearly three-quarters (71%, n = 216) of the sample had ever used a substance, almost all of whom engaged in ASSIST-defined moderate-risk (55%) or high-risk (40%) use. Survivors of physical or emotional violence (AOR = 3.54; 95% confidence interval [CI] 1.89–6.65, p

  15. Natural Disasters Data Explorer

    • kaggle.com
    zip
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathurin Aché (2021). Natural Disasters Data Explorer [Dataset]. https://www.kaggle.com/datasets/mathurinache/natural-disasters-data-explorer/code
    Explore at:
    zip(191673 bytes)Available download formats
    Dataset updated
    Dec 3, 2021
    Authors
    Mathurin Aché
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Disasters include all geophysical, meteorological and climate events including earthquakes, volcanic activity, landslides, drought, wildfires, storms, and flooding. Decadal figures are measured as the annual average over the subsequent ten-year period.

    Content

    Thanks to Our World in Data, you can explore death from natural disasters by country and by date.

    Acknowledgements

    https://www.acacamps.org/sites/default/files/resource_library_images/naturaldisaster4.jpg" alt="Natural Disasters">

    Inspiration

    List of variables for inspiration: Number of deaths from drought Number of people injured from drought Number of people affected from drought Number of people left homeless from drought Number of total people affected by drought Reconstruction costs from drought Insured damages against drought Total economic damages from drought Death rates from drought Injury rates from drought Number of people affected by drought per 100,000 Homelessness rate from drought Total number of people affected by drought per 100,000 Number of deaths from earthquakes Number of people injured from earthquakes Number of people affected by earthquakes Number of people left homeless from earthquakes Number of total people affected by earthquakes Reconstruction costs from earthquakes Insured damages against earthquakes Total economic damages from earthquakes Death rates from earthquakes Injury rates from earthquakes Number of people affected by earthquakes per 100,000 Homelessness rate from earthquakes Total number of people affected by earthquakes per 100,000 Number of deaths from disasters Number of people injured from disasters Number of people affected by disasters Number of people left homeless from disasters Number of total people affected by disasters Reconstruction costs from disasters Insured damages against disasters Total economic damages from disasters Death rates from disasters Injury rates from disasters Number of people affected by disasters per 100,000 Homelessness rate from disasters Total number of people affected by disasters per 100,000 Number of deaths from volcanic activity Number of people injured from volcanic activity Number of people affected by volcanic activity Number of people left homeless from volcanic activity Number of total people affected by volcanic activity Reconstruction costs from volcanic activity Insured damages against volcanic activity Total economic damages from volcanic activity Death rates from volcanic activity Injury rates from volcanic activity Number of people affected by volcanic activity per 100,000 Homelessness rate from volcanic activity Total number of people affected by volcanic activity per 100,000 Number of deaths from floods Number of people injured from floods Number of people affected by floods Number of people left homeless from floods Number of total people affected by floods Reconstruction costs from floods Insured damages against floods Total economic damages from floods Death rates from floods Injury rates from floods Number of people affected by floods per 100,000 Homelessness rate from floods Total number of people affected by floods per 100,000 Number of deaths from mass movements Number of people injured from mass movements Number of people affected by mass movements Number of people left homeless from mass movements Number of total people affected by mass movements Reconstruction costs from mass movements Insured damages against mass movements Total economic damages from mass movements Death rates from mass movements Injury rates from mass movements Number of people affected by mass movements per 100,000 Homelessness rate from mass movements Total number of people affected by mass movements per 100,000 Number of deaths from storms Number of people injured from storms Number of people affected by storms Number of people left homeless from storms Number of total people affected by storms Reconstruction costs from storms Insured damages against storms Total economic damages from storms Death rates from storms Injury rates from storms Number of people affected by storms per 100,000 Homelessness rate from storms Total number of people affected by storms per 100,000 Number of deaths from landslides Number of people injured from landslides Number of people affected by landslides Number of people left homeless from landslides Number of total people affected by landslides Reconstruction costs from landslides Insured damages against landslides Total economic damages from landslides Death rates from landslides Injury rates from landslides Number of people affected by landslides per 100,000 Homelessness rate from landslides Total number of people affected by landslides per 100,000 Number of deaths from fog Number of people injured from fog Number of people affected by fog Number of people left homel...

  16. Data from: Ain’t got no home, for this reason I live on the street. The...

    • scielo.figshare.com
    jpeg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sonia Maria Taddei Ferraz; Bruno Amadei Machado (2023). Ain’t got no home, for this reason I live on the street. The homeless population: dwellers or trespassers? [Dataset]. http://doi.org/10.6084/m9.figshare.7512158.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Sonia Maria Taddei Ferraz; Bruno Amadei Machado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article analyzes the evictions faced by the homeless during the preparations of Rio de Janeiro for the 2014 World Cup and the 2016 Olympic Games, framed by social conflicts in favor of the right to the city, by juxtaposing urban security for the elites and disrespect for the rights of subaltern classes. The media’s and the official discourses classify the homeless as those who “live on the streets”, naturalizing their “home-less” condition and establishing the myth that, despite not having a home, that population inhabit somewhere. This process tends to empty the conflicting nature of the social relations that operate within the cities, such as the real reasons for the economic and social exclusion, thus accentuating opportunities for huge real estate investments in accelerated gentrification processes.

  17. i

    Grant Giving Statistics for Global Partnership for Homeless Health Inc.

    • instrumentl.com
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Grant Giving Statistics for Global Partnership for Homeless Health Inc. [Dataset]. https://www.instrumentl.com/990-report/global-partnership-for-homeless-health-inc
    Explore at:
    Dataset updated
    Feb 28, 2023
    Variables measured
    Total Assets, Total Giving
    Description

    Financial overview and grant giving statistics of Global Partnership for Homeless Health Inc.

  18. Population Census 2000 - IPUMS Subset - Indonesia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Bureau of Statistics (2025). Population Census 2000 - IPUMS Subset - Indonesia [Dataset]. https://microdata.worldbank.org/index.php/catalog/1053
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    Central Bureau of Statisticshttp://cbs.gov.np/
    IPUMS
    Time period covered
    2000
    Area covered
    Indonesia
    Description

    Analysis unit

    Persons, households, and dwellings

    UNITS IDENTIFIED: - Dwellings: yes - Vacant Units: no - Households: yes - Individuals: yes - Group quarters: yes

    UNIT DESCRIPTIONS: - Dwellings: Not available - Households: An individual or group of people who inhabit part or all of the physical or census building, usually live together, who eat from one kitchen or organize daily needs together as one unit. - Group quarters: A special household includes people living in dormitories, barracks, or institutions in which daily needs are under the responsibility of a foundation or other organization. Also includes groups of people in lodging houses or buildings, where the total number of lodgers is ten or more.

    Universe

    All population residing in the geographic area of Indonesia regardless of residence status. Diplomats and their families residing in Indonesia were excluded.

    Kind of data

    Population and Housing Census [hh/popcen]

    Sampling procedure

    MICRODATA SOURCE: Central Bureau of Statistics

    SAMPLE SIZE (person records): 20112539.

    SAMPLE DESIGN: Geographically stratified systematic sample (drawn by IPUMS).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    L1 questionnaire for buildings and households; L2 questionnaire for permanent residents; and L3 questionnaire for non-permanent residents (boat people, homeless persons, etc).

  19. Adjusted odds ratios (and 95% confidence intervals) from binary logistic...

    • figshare.com
    xls
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megan Odd; Amir Erfani (2024). Adjusted odds ratios (and 95% confidence intervals) from binary logistic regression of ever experiencing housing loss due to "housing/financial loss", "health issues", and "interpersonal/family issues" by selected characteristics among homeless individuals (N = 207), Nipissing District, Ontario 2021. [Dataset]. http://doi.org/10.1371/journal.pone.0305485.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Megan Odd; Amir Erfani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Nipissing District, Ontario
    Description

    Adjusted odds ratios (and 95% confidence intervals) from binary logistic regression of ever experiencing housing loss due to "housing/financial loss", "health issues", and "interpersonal/family issues" by selected characteristics among homeless individuals (N = 207), Nipissing District, Ontario 2021.

  20. Q

    Community Expert Interviews on Priority Healthcare Needs Amongst People...

    • data.qdr.syr.edu
    pdf, txt
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolyn Ingram; Carolyn Ingram (2023). Community Expert Interviews on Priority Healthcare Needs Amongst People Experiencing Homelessness in Dublin, Ireland: 2022-2023 [Dataset]. http://doi.org/10.5064/F6HFOEC5
    Explore at:
    pdf(599798), txt(6566), pdf(474790), pdf(138736), pdf(530060), pdf(612983), pdf(453939), pdf(729114), pdf(538538), pdf(396835), pdf(593906), pdf(656401), pdf(643059), pdf(506008), pdf(451086), pdf(550588), pdf(670927), pdf(180547), pdf(189571), pdf(367380)Available download formats
    Dataset updated
    Nov 10, 2023
    Dataset provided by
    Qualitative Data Repository
    Authors
    Carolyn Ingram; Carolyn Ingram
    License

    https://qdr.syr.edu/policies/qdr-standard-access-conditionshttps://qdr.syr.edu/policies/qdr-standard-access-conditions

    Time period covered
    Sep 1, 2022 - Mar 31, 2023
    Area covered
    Ireland, Dublin
    Description

    Project Overview This study used a community-based participatory approach to identify and investigate the needs of people experiencing homelessness in Dublin, Ireland. The project had several stages: A systematic review on health disparities amongst people experiencing homelessness in the Republic of Ireland; Observation and interviews with homeless attendees of a community health clinic; and Interviews with community experts (CEs) conducted from September 2022 to March 2023 on ongoing work and gaps in the research/health service response. This data deposit stems from stage 3, the community expert interview aspect of this project. Stage 1 of the project has been published (Ingram et al., 2023.) and associated data are available here. De-identified field note data from stage 2 of the project are planned for sharing upon completion of analysis, in January 2024. Data and Data Collection Overview A purposive, criterion-i sampling strategy (Palinkas et al., 2015) – where selected interviewees meet a predetermined criterion of importance – was used to identify professionals working in homeless health and/or addiction services in Dublin, stratified by occupation type. Potential CEs were identified through an internet search of homeless health and addiction services in Dublin. Interviewed CEs were invited to recommend colleagues they felt would have relevant perspectives on community health needs, expanding the sample via snowball strategy. Interview questions were based on World Health Organization Community Health Needs Assessment guidelines (Rowe at al., 2001). Semi-structured interviews were conducted between September 2022 and March 2023 utilising ZOOM™, the phone, or in person according to participant preference. Carolyn Ingram, who has formal qualitative research training, served as the interviewer. CEs were presented with an information sheet and gave audio recorded, informed oral consent – considered appropriate for remote research conducted with non-vulnerable adult participants – in the full knowledge that interviews would be audio recorded, transcribed, and de-identified, as approved by the researchers’ institutional Human Research Ethics Committee (LS-E-125-Ingram-Perrotta-Exemption). Interviewees also gave permission for de-identified transcripts to be shared in a qualitative data archive. Shared Data Organization 16 de-identified transcripts from the CE interviews are being published. Three participants from the total sample (N=19) did not consent to data archival. The transcript from each interviewee is named based on the type of work the interviewee performs, with individuals in the same type of work being differentiated by numbers. The full set of professional categories is as follows: Addiction Services Government Homeless Health Services Hospital Psychotherapist Researcher Social Care Any changes or removal of words or phrases for de-identification purposes are flagged by including [brackets] and italics. The documentation files included in this data project are the consent form and the interview guide used for the study, this data narrative and an administrative README file. References Ingram C, Buggy C, Elabbasy D, Perrotta C. (2023) “Homelessness and health-related outcomes in the Republic of Ireland: a systematic review, meta-analysis and evidence map.” Journal of Public Health (Berl). https://doi.org/10.1007/s10389-023-01934-0 Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoagwood K. (2015) “Purposeful sampling for qualitative data collection and analysis in mixed method implementation research.” Administration and Policy in Mental Health. Sep;42(5):533–44. https://doi.org/10.1007/s10488-013-0528-y Rowe A, McClelland A, Billingham K, Carey L. (2001) “Community health needs assessment: an introductory guide for the family health nurse in Europe” [Internet]. World Health Organization. Regional Office for Europe. Available at: https://apps.who.int/iris/handle/10665/108440

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Estimated number of homeless people in the U.S. 2007-2023 [Dataset]. https://www.statista.com/statistics/555795/estimated-number-of-homeless-people-in-the-us/
Organization logo

Estimated number of homeless people in the U.S. 2007-2023

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2023, there were about ******* homeless people estimated to be living in the United States, the highest number of homeless people recorded within the provided time period. In comparison, the second-highest number of homeless people living in the U.S. within this time period was in 2007, at *******. How is homelessness calculated? Calculating homelessness is complicated for several different reasons. For one, it is challenging to determine how many people are homeless as there is no direct definition for homelessness. Additionally, it is difficult to try and find every single homeless person that exists. Sometimes they cannot be reached, leaving people unaccounted for. In the United States, the Department of Housing and Urban Development calculates the homeless population by counting the number of people on the streets and the number of people in homeless shelters on one night each year. According to this count, Los Angeles City and New York City are the cities with the most homeless people in the United States. Homelessness in the United States Between 2022 and 2023, New Hampshire saw the highest increase in the number of homeless people. However, California was the state with the highest number of homeless people, followed by New York and Florida. The vast amount of homelessness in California is a result of multiple factors, one of them being the extreme high cost of living, as well as opposition to mandatory mental health counseling and drug addiction. However, the District of Columbia had the highest estimated rate of homelessness per 10,000 people in 2023. This was followed by New York, Vermont, and Oregon.

Search
Clear search
Close search
Google apps
Main menu