When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.
In 2023, there were about ******* homeless people estimated to be living in the United States, the highest number of homeless people recorded within the provided time period. In comparison, the second-highest number of homeless people living in the U.S. within this time period was in 2007, at *******. How is homelessness calculated? Calculating homelessness is complicated for several different reasons. For one, it is challenging to determine how many people are homeless as there is no direct definition for homelessness. Additionally, it is difficult to try and find every single homeless person that exists. Sometimes they cannot be reached, leaving people unaccounted for. In the United States, the Department of Housing and Urban Development calculates the homeless population by counting the number of people on the streets and the number of people in homeless shelters on one night each year. According to this count, Los Angeles City and New York City are the cities with the most homeless people in the United States. Homelessness in the United States Between 2022 and 2023, New Hampshire saw the highest increase in the number of homeless people. However, California was the state with the highest number of homeless people, followed by New York and Florida. The vast amount of homelessness in California is a result of multiple factors, one of them being the extreme high cost of living, as well as opposition to mandatory mental health counseling and drug addiction. However, the District of Columbia had the highest estimated rate of homelessness per 10,000 people in 2023. This was followed by New York, Vermont, and Oregon.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the top 15 states by an estimated number of homeless people in the United States for the year 2025. The x-axis represents U.S. states, while the y-axis shows the number of homeless individuals in each state. California has the highest homeless population with 187,084 individuals, followed by New York with 158,019, while Hawaii places last in this dataset with 11,637. This bar graph highlights significant differences across states, with some states like California and New York showing notably higher counts compared to others, indicating regional disparities in homelessness levels across the country.
In 2023, there were an estimated ******* white homeless people in the United States, the most out of any ethnicity. In comparison, there were around ******* Black or African American homeless people in the U.S. How homelessness is counted The actual number of homeless individuals in the U.S. is difficult to measure. The Department of Housing and Urban Development uses point-in-time estimates, where employees and volunteers count both sheltered and unsheltered homeless people during the last 10 days of January. However, it is very likely that the actual number of homeless individuals is much higher than the estimates, which makes it difficult to say just how many homeless there are in the United States. Unsheltered homeless in the United States California is well-known in the U.S. for having a high homeless population, and Los Angeles, San Francisco, and San Diego all have high proportions of unsheltered homeless people. While in many states, the Department of Housing and Urban Development says that there are more sheltered homeless people than unsheltered, this estimate is most likely in relation to the method of estimation.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the estimated number of homeless people in the United States from 2007 to 2024. The x-axis represents the years, ranging from 2007 to 2023, while the y-axis indicates the number of homeless individuals. The estimated homeless population varies over this period, ranging from a low of 57,645 in 2014 to a high of 771,000 in 2024. From 2007 to 2013, there is a general decline in numbers from 647,258 to 590,364. In 2014, the number drops significantly to 57,645, followed by an increase to 564,708 in 2015. The data shows fluctuations in subsequent years, with another notable low of 55,283 in 2018. From 2019 onwards, the estimated number of homeless people generally increases, reaching its peak in 2024. This data highlights fluctuations in homelessness estimates over the years, with a recent upward trend in the homeless population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Resource Statistics for the homeless provides information on the centres that carry out their activity for this group in the field of social services of the Basque Country. It examines the main characteristics of these centres; both those relating to the benefits offered, capacity, population attended, orientation, schedule, annual period of activity, as well as human resources, expenditure and financing thereof. Likewise, this operation serves as the basis for the sample selection of the homeless survey.
Each year, homeless coalitions across the country conduct a Point in Time Count (PIT) during the same 24-hour period in January to estimate the number of persons experiencing homelessness living in their region. The PIT count includes those living in emergency shelters, transitional housing programs, and those living unsheltered on the street. The PIT count does not include homeless families and youth who are doubled up with family or friends, or those at imminent risk of becoming homeless. The numbers are a “snapshot” on a single day rather than a definitive count. Despite these limitations, the count helps communities plan for programs and services, identifies gaps in the homeless system, and provides demographic information about populations who experience homelessness.
This dataset includes key measures that have been counted during each PIT since 2019. This dataset will be updated annually.
The number of people left homeless due to wildfires in 2023 amounted to 81, a considerable decrease when compared to the figures of 2022 and 2021, when 3,933 and 4,893 people lost their homes due to such disasters.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Resource Statistics for the homeless provides information on the centres that carry out their activity for this group in the field of social services of the Basque Country. It examines the main characteristics of these centres; both those relating to the benefits offered, capacity, population attended, orientation, schedule, annual period of activity, as well as human resources, expenditure and financing thereof. Likewise, this operation serves as the basis for the sample selection of the homeless survey. The Resource Statistics for the homeless provides information on the centres that carry out their activity for this group in the field of social services of the Basque Country. It examines the main characteristics of these centres; both those relating to the benefits offered, capacity, population attended, orientation, schedule, annual period of activity, as well as human resources, expenditure and financing thereof. Likewise, this operation serves as the basis for the sample selection of the homeless survey.
This layer contains detailed Point in Time counts of homeless populations from 2019. This layer is modeled after a similar layer that contains data for 2018, 2013, and 2008.Layer is symbolized to show the count of the overall homeless population in 2019, with a pie chart of breakdown of type of shelter. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. The Point-in-Time (PIT) count is a count of sheltered and unsheltered homeless persons on a single night in January. HUD requires that Continuums of Care Areas (CoCs) conduct an annual count of homeless persons who are sheltered in emergency shelter, transitional housing, and Safe Havens on a single night. CoCs also must conduct a count of unsheltered homeless persons every other year (odd numbered years). Each count is planned, coordinated, and carried out locally.The Point-in-Time values were retrieved from HUD's Historical Data site. Original source is the 2019 sheet within the "2007 - 2019 PIT Counts by CoCs.xlsx" (downloaded on 3/10/2020) file. Key fields were kept and joined to the CoC boundaries available from HUD's Open Data site.Data note: MO-604 covers territory in both Missouri and Kansas. The record described in this file represents the CoC's total territory, the sum of the point-in-time estimates the CoC separately reported for the portions of its territory in MO and in KS.For more information and attributes on the CoC Areas themselves, including contact information, see this accompanying layer.Suggested Citation: U.S. Department of Housing and Urban Development (HUD)'s Point in Time (PIT) 2019 counts for Continuum of Care Grantee Areas, accessed via ArcGIS Living Atlas of the World on (date).
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Homeless persons ever reported and/or arrested according to whether or not they have been convicted, classified by age. National.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Natural Disasters Data Explorer’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mathurinache/natural-disasters-data-explorer on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Disasters include all geophysical, meteorological and climate events including earthquakes, volcanic activity, landslides, drought, wildfires, storms, and flooding. Decadal figures are measured as the annual average over the subsequent ten-year period.
Thanks to Our World in Data, you can explore death from natural disasters by country and by date.
https://www.acacamps.org/sites/default/files/resource_library_images/naturaldisaster4.jpg" alt="Natural Disasters">
List of variables for inspiration: Number of deaths from drought Number of people injured from drought Number of people affected from drought Number of people left homeless from drought Number of total people affected by drought Reconstruction costs from drought Insured damages against drought Total economic damages from drought Death rates from drought Injury rates from drought Number of people affected by drought per 100,000 Homelessness rate from drought Total number of people affected by drought per 100,000 Number of deaths from earthquakes Number of people injured from earthquakes Number of people affected by earthquakes Number of people left homeless from earthquakes Number of total people affected by earthquakes Reconstruction costs from earthquakes Insured damages against earthquakes Total economic damages from earthquakes Death rates from earthquakes Injury rates from earthquakes Number of people affected by earthquakes per 100,000 Homelessness rate from earthquakes Total number of people affected by earthquakes per 100,000 Number of deaths from disasters Number of people injured from disasters Number of people affected by disasters Number of people left homeless from disasters Number of total people affected by disasters Reconstruction costs from disasters Insured damages against disasters Total economic damages from disasters Death rates from disasters Injury rates from disasters Number of people affected by disasters per 100,000 Homelessness rate from disasters Total number of people affected by disasters per 100,000 Number of deaths from volcanic activity Number of people injured from volcanic activity Number of people affected by volcanic activity Number of people left homeless from volcanic activity Number of total people affected by volcanic activity Reconstruction costs from volcanic activity Insured damages against volcanic activity Total economic damages from volcanic activity Death rates from volcanic activity Injury rates from volcanic activity Number of people affected by volcanic activity per 100,000 Homelessness rate from volcanic activity Total number of people affected by volcanic activity per 100,000 Number of deaths from floods Number of people injured from floods Number of people affected by floods Number of people left homeless from floods Number of total people affected by floods Reconstruction costs from floods Insured damages against floods Total economic damages from floods Death rates from floods Injury rates from floods Number of people affected by floods per 100,000 Homelessness rate from floods Total number of people affected by floods per 100,000 Number of deaths from mass movements Number of people injured from mass movements Number of people affected by mass movements Number of people left homeless from mass movements Number of total people affected by mass movements Reconstruction costs from mass movements Insured damages against mass movements Total economic damages from mass movements Death rates from mass movements Injury rates from mass movements Number of people affected by mass movements per 100,000 Homelessness rate from mass movements Total number of people affected by mass movements per 100,000 Number of deaths from storms Number of people injured from storms Number of people affected by storms Number of people left homeless from storms Number of total people affected by storms Reconstruction costs from storms Insured damages against storms Total economic damages from storms Death rates from storms Injury rates from storms Number of people affected by storms per 100,000 Homelessness rate from storms Total number of people affected by storms per 100,000 Number of deaths from landslides Number of people injured from landslides Number of people affected by landslides Number of people left homeless from landslides Number of total people affected by landslides Reconstruction costs from landslides Insured damages against landslides Total economic damages from landslides Death rates from landslides Injury rates from landslides Number of people affected by landslides per 100,000 Homelessness rate from landslides Total number of people affected by landslides per 100,000 Number of deaths from fog Number of people injured from fog Number of people affected by fog Number of people left homeless from fog Number of total people affected by fog Reconstruction costs from fog Insured damages against fog Total economic damages from fog Death rates from fog Injury rates from fog Number of people affected by fog per 100,000 Homelessness rate from fog Total number of people affected by fog per 100,000 Number of deaths from wildfires Number of people injured from wildfires Number of people affected by wildfires Number of people left homeless from wildfires Number of total people affected by wildfires Reconstruction costs from wildfires Insured damages against wildfires Total economic damages from wildfires Death rates from wildfires Injury rates from wildfires Number of people affected by wildfires per 100,000 Homelessness rate from wildfires Total number of people affected by wildfires per 100,000 Number of deaths from extreme temperatures Number of people injured from extreme temperatures Number of people affected by extreme temperatures Number of people left homeless from extreme temperatures Number of total people affected by extreme temperatures Reconstruction costs from extreme temperatures Insured damages against extreme temperatures Total economic damages from extreme temperatures Death rates from extreme temperatures Injury rates from extreme temperatures Number of people affected by extreme temperatures per 100,000 Homelessness rate from extreme temperatures Total number of people affected by extreme temperatures per 100,000 Number of deaths from glacial lake outbursts Number of people injured from glacial lake outbursts Number of people affected by glacial lake outbursts Number of people left homeless from glacial lake outbursts Number of total people affected by glacial lake outbursts Reconstruction costs from glacial lake outbursts Insured damages against glacial lake outbursts Total economic damages from glacial lake outbursts Death rates from glacial lake outbursts Injury rates from glacial lake outbursts Number of people affected by glacial lake outbursts per 100,000 Homelessness rate from glacial lake outbursts Total number of people affected by glacial lake outbursts per 100,000 Total economic damages from disasters as a share of GDP Total economic damages from drought as a share of GDP Total economic damages from earthquakes as a share of GDP Total economic damages from extreme temperatures as a share of GDP Total economic damages from floods as a share of GDP Total economic damages from landslides as a share of GDP Total economic damages from mass movements as a share of GDP Total economic damages from storms as a share of GDP Total economic damages from volcanic activity as a share of GDP Total economic damages from volcanic activity as a share of GDP Entity Year deaths_rate_per_100k_storm injured_rate_per_100k_storm total_affected_rate_per_100k_all_disasters
--- Original source retains full ownership of the source dataset ---
This layer contains detailed Point in Time counts of homeless populations from 2018, 2013, and 2008. A 2019 version is now available!Layer is symbolized to show the count of the overall homeless population in 2018, with overall counts from 2008 and 2013 in the pop-up, as well as a pie chart of breakdown of type of shelter. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. The Point-in-Time (PIT) count is a count of sheltered and unsheltered homeless persons on a single night in January. HUD requires that Continuums of Care Areas (CoCs) conduct an annual count of homeless persons who are sheltered in emergency shelter, transitional housing, and Safe Havens on a single night. CoCs also must conduct a count of unsheltered homeless persons every other year (odd numbered years). Each count is planned, coordinated, and carried out locally.The Point-in-Time values were retrieved from HUD's Historical Data site. The 2018, 2013, and 2008 sheets within the "2007 - 2018 PIT Counts within CoCs.xlsx" (downloaded on 2/7/2019) file were combined and joined to the CoC boundaries available from HUD's Open Data site. As noted in the "Mergers" sheet in the PIT Excel file, some CoC Areas have merged over the years. Use caution when comparing numbers in these CoCs across years. Data note: MO-604 covers territory in both Missouri and Kansas. The record described in this file represents the CoC's total territory, the sum of the point-in-time estimates the CoC separately reported for the portions of its territory in MO and in KS.For more information and attributes on the CoC Areas themselves, including contact information, see this accompanying layer.Suggested Citation: U.S. Department of Housing and Urban Development (HUD)'s Point in Time (PIT) counts for Continuum of Care Grantee Areas, accessed via ArcGIS Living Atlas of the World on (date).
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Homeless persons according to whether they have ever been in prison, classified by age. National.
This map shows Point in Time counts of the overall homeless populations from 2019. Layer is symbolized to show the count of the overall homeless population in 2019, with a pie chart of breakdown of type of shelter. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. The Point-in-Time (PIT) count is a count of sheltered and unsheltered homeless persons on a single night in January. HUD requires that Continuums of Care Areas (CoCs) conduct an annual count of homeless persons who are sheltered in emergency shelter, transitional housing, and Safe Havens on a single night. CoCs also must conduct a count of unsheltered homeless persons every other year (odd numbered years). Each count is planned, coordinated, and carried out locally.The Point-in-Time values were retrieved from HUD's Historical Data site. Original source is the 2019 sheet within the "2007 - 2019 PIT Counts by CoCs.xlsx" (downloaded on 3/10/2020) file. Key fields were kept and joined to the CoC boundaries available from HUD's Open Data site.Data note: MO-604 covers territory in both Missouri and Kansas. The record described in this file represents the CoC's total territory, the sum of the point-in-time estimates the CoC separately reported for the portions of its territory in MO and in KS.For more information and attributes on the CoC Areas themselves, including contact information, see this accompanying layer.Suggested Citation: U.S. Department of Housing and Urban Development (HUD)'s Point in Time (PIT) 2019 counts for Continuum of Care Grantee Areas, accessed via ArcGIS Living Atlas of the World on (date).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundHomelessness is one of the most disabling and precarious living conditions. The objective of this Delphi consensus study was to identify priority needs and at-risk population subgroups among homeless and vulnerably housed people to guide the development of a more responsive and person-centred clinical practice guideline.MethodsWe used a literature review and expert working group to produce an initial list of needs and at-risk subgroups of homeless and vulnerably housed populations. We then followed a modified Delphi consensus method, asking expert health professionals, using electronic surveys, and persons with lived experience of homelessness, using oral surveys, to prioritize needs and at-risk sub-populations across Canada. Criteria for ranking included potential for impact, extent of inequities and burden of illness. We set ratings of ≥ 60% to determine consensus over three rounds of surveys.FindingsEighty four health professionals and 76 persons with lived experience of homelessness participated from across Canada, achieving an overall 73% response rate. The participants identified priority needs including mental health and addiction care, facilitating access to permanent housing, facilitating access to income support and case management/care coordination. Participants also ranked specific homeless sub-populations in need of additional research including: Indigenous Peoples (First Nations, Métis, and Inuit); youth, women and families; people with acquired brain injury, intellectual or physical disabilities; and refugees and other migrants.InterpretationThe inclusion of the perspectives of both expert health professionals and people with lived experience of homelessness provided validity in identifying real-world needs to guide systematic reviews in four key areas according to priority needs, as well as launch a number of working groups to explore how to adapt interventions for specific at-risk populations, to create evidence-based guidelines.
Statistics on resources for the homeless offer information on centres that carry out activity for this collective in the sphere of social services in the Basque Country. They study the main characteristics of these centres, referring to provisions offered, capacity, population attended to, orientation, timetable, annual activity period, as well as human resources, expenditure and funding. Furthermore, this operation serves as a base for the sample selection of the survey on the homeless.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Included in this data set are data elements that will help the public identify agencies that are certified to operate programs for runaway and homeless youth. These programs are available to assist runaway and homeless youth in emergency situation and provide independent living skills for youth in transition. Data elements include the agency name, agency business address, phone number, website and type of program offered.
This is a dataset hosted by the State of New York. The state has an open data platform found here and they update their information according the amount of data that is brought in. Explore New York State using Kaggle and all of the data sources available through the State of New York organization page!
This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.
Cover photo by Zac Ong on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Statistics on resources for the homeless offer information on centres that carry out activity for this collective in the sphere of social services in the Basque Country. They study the main characteristics of these centres, referring to provisions offered, capacity, population attended to, orientation, timetable, annual activity period, as well as human resources, expenditure and funding. Furthermore, this operation serves as a base for the sample selection of the survey on the homeless.
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Homeless persons according to whether they have ever used drugs, the last month and type of drugs by disability. National.
When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.