The coronavirus (COVID-19) pandemic has spread swiftly from the Chinese city Wuhan across the world. In Hong Kong, the number of active cases amounted to 260,919 with 9,389 deaths as of June 7, 2022. The financial hub was one of the places which were able to flatten the pandemic curve for a long time before the Omicron variant. To boost the low inoculation rate, Hong Kong government has widened the COVID-19 vaccine access to all residents aged 16 and older.
JHU Coronavirus COVID-19 Global Cases, by country
PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.
This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.
Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Included Data Sources are:
%3C!-- --%3E
**Terms of Use: **
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
**U.S. county-level characteristics relevant to COVID-19 **
Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong recorded 1283514 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, Hong Kong reported 9427 Coronavirus Deaths. This dataset includes a chart with historical data for Hong Kong Coronavirus Cases.
This layer shows the location of all visited and resided buildings of probable or confirmed COVID-19 cases in Hong Kong. It is a set of data made available by the Department of Health under the Government of Hong Kong Special Administrative Region (the "Government") at https://GEODATA.GOV.HK/ ("Hong Kong Geodata Store"). The source data is in GML format and has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong Geodata Store at https://geodata.gov.hk/.
This layer shows the location of all visited and resided buildings of probable or confirmed COVID-19 cases in Hong Kong. It is a set of data made available by the Department of Health under the Government of Hong Kong Special Administrative Region (the "Government") at https://GEODATA.GOV.HK/ ("Hong Kong Geodata Store"). The source data is in GML format and has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong Geodata Store at https://geodata.gov.hk/.
As of December 12, 2022, Hong Kong had the highest rate of coronavirus (COVID-19) cases reported in the previous seven days in the Asia-Pacific region, around 1.19 thousand cases per 100 thousand people. South Korea followed with 825 cases per 100,000 people in the past seven days.
The outbreak of the novel coronavirus in Wuhan, China, saw infection cases spread throughout the Asia-Pacific region. By April 13, 2024, India had faced over 45 million coronavirus cases. South Korea followed behind India as having had the second highest number of coronavirus cases in the Asia-Pacific region, with about 34.6 million cases. At the same time, Japan had almost 34 million cases. At the beginning of the outbreak, people in South Korea had been optimistic and predicted that the number of cases would start to stabilize. What is SARS CoV 2?Novel coronavirus, officially known as SARS CoV 2, is a disease which causes respiratory problems which can lead to difficulty breathing and pneumonia. The illness is similar to that of SARS which spread throughout China in 2003. After the outbreak of the coronavirus, various businesses and shops closed to prevent further spread of the disease. Impacts from flight cancellations and travel plans were felt across the Asia-Pacific region. Many people expressed feelings of anxiety as to how the virus would progress. Impact throughout Asia-PacificThe Coronavirus and its variants have affected the Asia-Pacific region in various ways. Out of all Asia-Pacific countries, India was highly affected by the pandemic and experienced more than 50 thousand deaths. However, the country also saw the highest number of recoveries within the APAC region, followed by South Korea and Japan.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.
This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.
The data set contains the following columns:
ObservationDate: The date on which the incidents are observed
country: Country of the Outbreak
Confirmed: Number of confirmed cases till observation date
Deaths: Number of death cases till observation date
Recovered: Number of recovered cases till observation date
New Confirmed: Number of new confirmed cases on observation date
New Deaths: Number of New death cases on observation date
New Recovered: Number of New recovered cases on observation date
latitude: Latitude of the affected country
longitude: Longitude of the affected country
This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.
Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
COVID-19 surveillance data including laboratory surveillance, COVID-19 outbreak, severe and fatal COVID-19 cases, sewage surveillance and sentinel surveillance
https://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE
In past 24 hours, Hong Kong, Asia had 696 new cases, 34 deaths and N/A recoveries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the data for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).Data SourcesWorld Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-casesMinistry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the data for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).Data SourcesWorld Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-casesMinistry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The purpose of this project is to write a large and in sync dataset focused patient characteristics for identify the Risk groups and characteristics human-level that impact on infection, Complication and Death as a result of the disease
https://docs.google.com/spreadsheets/d/1awEY-04UK8wibkbZ1qfV6a-Q9YKScfP7qiAtWDsp9Jw/edit?usp=sharing
4535323 rows
A version that includes cleaning the data and engineering new features for more detail : https://docs.google.com/spreadsheets/d/1awEY-04UK8wibkbZ1qfV6a-Q9YKScfP7qiAtWDsp9Jw/edit?usp=sharing
Machine-ready version of machine learning model Consists only of INT and FLOAT for more detail : https://docs.google.com/spreadsheets/d/1awEY-04UK8wibkbZ1qfV6a-Q9YKScfP7qiAtWDsp9Jw/edit?usp=sharing
There may be duplicate cases (which come from different data systems) Focusing on countries: France, Korea, Indonesia, Tunisia, Japan, canada, new_zealand, singapore, guatemala, philippines, india, vietnam, hong kong , Toronto, Mexico.
I did not check the credibility of the sources
Concerns of the credibility of the Mexican government's data
Concerns about the credibility of the data of the Chinese government
india_wiki https://www.kaggle.com/karthikcs1/covid19-coronavirus-patient-list-karnataka-india
philippines https://www.kaggle.com/sundiver/covid19-philippines-edges
france https://www.kaggle.com/lperez/coronavirus-france-dataset
korea https://www.kaggle.com/kimjihoo/coronavirusdataset
indonesia https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
tunisia https://www.kaggle.com/ghassen1302/coronavirus-tunisia
japan https://www.kaggle.com/tsubasatwi/close-contact-status-of-corona-in-japan
world https://github.com/beoutbreakprepared/nCoV2019/tree/master/latest_data
canada https://www.kaggle.com/ryanxjhan/coronaviruscovid19-canada
new_zealand https://www.kaggle.com/madhavkru/covid19-nz
singapore https://www.kaggle.com/rhodiumbeng/singapores-covid19-cases
guatemala https://www.kaggle.com/ncovgt2020/covid19-guatemala
colombia https://www.kaggle.com/sebaxtian/covid19co
mexico https://www.kaggle.com/lalish99/covid19-mx
india_data https://www.kaggle.com/samacker77k/covid19india
vietnam https://www.kaggle.com/nh
kerla https://www.kaggle.com/baburajr/covid19inkerala
hong_kong https://www.kaggle.com/teddyteddywu/covid-19-hong-kong-cases
toronto https://www.kaggle.com/divyansh22/toronto-covid19-cases
Determining the severity illness according to WHO: https://www.who.int/publications/i/item/clinical-management-of-covid-19
*Thanks to all sources
*If you have any helpful information or suggestions for improvement, write
netbook PART A - cleaning and conact the data: https://www.kaggle.com/shirmani/characteristics-of-corona-patient-ds-v4
netbook PART B- features Engineering: https://www.kaggle.com/shirmani/build-characteristics-corona-patients-part-b/edit
part C data QA https://www.kaggle.com/shirmani/qa-characteristics-corona-patients-part-c
netbook PART D - format the data to int and float cols (model preparation): https://www.kaggle.com/shirmani/build-characteristics-corona-patients-part-d
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
My PhD thesis with title "Investigating Changes in COVID-19 Epidemiological Parameters from Different Perspectives" focus on using line list data (anonymized), patient hospitalization data (anonymized) and viral load data (anonymized) to improve the estimatin of different key epidemiological parameters during the COVID-19 pandemic in Hong Kong.This dataset contains supporting data for reproducibility, it has 6 subfolders correspond to 6 chapters of the thesis (chapters 2, 4, 5, 6, 7, 8) where contain figures and data analyses, each sub folder contains data and R code for reproducing the figures and other analytical results, with README file accompanied with each sub folder.In chapter 2, I provided an overview of the COVID-19 pandemic in Hong Kong and worldwide, and thus used datasets contain case incidence data and a R code to generate incidence figure. I also conducted a systematic review of the latent period estimation, and I provided the endnote library with spreadsheet of the endnote output that contain my paper screening process, which are included in subfolder dataset chapter 2.In chapter 4, I did a detailed statistical analyses of the changing serial interval of COVID-19 in Hong Kong, and thus sub folder dataset chapter 4 contained anonymized transmission pair line list data for estimating the serial interval, I provided R codes and essential subset of the data output for reproducibility of my results. The related published work is on American Journal of Epidemiology, in README chapter4.txt I have put the DOI of this paper.In chapter 5, I developed an inferential framework to infer the generation interval on temporal time scale, sub folder dataset chapter 5 contained public available line list data from mainland China, and R codes and essential subset of the data output for reproducibility of my results. The related published work is on Nature Communications, and the data and code are also available on github, I have out the DOI and github link in README chapter5.txt.In chapter 6, I investigated the superspreading potential and setting-specific generation interval in Hong Kong, subfolder dataset chapter 6 contained simplified and anonymized transmission cluster size information, and related R code to reproduce the result, and also the R code for modelling buildig and estimation summary of the generation interval estimates.In chapter 7, I estimated the latent period of COVID-19 based on different settings in Hong Kong, sub folder dataset chapter 7 contained processed and anonymized viral load record and transmission pair information of COVID-19 cases in Hong Kong, and related R code to reproduce the result, together with two spreadsheets for estimation summary. The entire R programming process contain a lot of R scripts, which I put two sub folders (R and Stan) under sub folder dataset chapter 7, and also put the original Github link for R programming of the method in README chapter 7.txtIn chapter 8, I analyzed the length of stay in hospital of COVID-19 patients in Hong Kong and the potential association with vaccination status. In sub folder dataset chapter 8 I put a simplified and anonymized dataset of patient's hospitalization record regarding their vaccination status and length of stay in hospital for the analysis. I also put R code and essential subset of the data output to reproduce the result.
As of June 6, 2022, the novel coronavirus SARS-CoV-2 that originated in Wuhan, the capital of Hubei province in China, had infected over 2.1 million people and killed 14,612 in the country. Hong Kong is currently the region with the highest active cases in China.
From Wuhan to the rest of China
In late December 2019, health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan Seafood Market. With Chinese New Year approaching, millions of Chinese migrant workers travelled back to their hometowns for the celebration. Before the start of the travel ban on January 23, around five million people had left Wuhan. By the end of January, the number of infections had surged to over ten thousand. The death toll from the virus exceeded that of the SARS outbreak a few days later. On February 12, thousands more cases were confirmed in Wuhan after an improvement to the diagnosis method, resulting in another sudden surge of confirmed cases. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. On April 17, 2020, health authorities in Wuhan revised its death toll, adding 50 percent more fatalities. After quarantine measures were implemented, the country reported no new local coronavirus COVID-19 transmissions for the first time on March 18, 2020.
The overloaded healthcare system
In Wuhan, 28 hospitals were designated to treat coronavirus patients, but the outbreak continued to test China’s disease control system and most of the hospitals were soon fully occupied. To combat the virus, the government announced plans to build a new hospital swiftly. On February 3, 2020, Huoshenshan Hospital was opened to provide an additional 1,300 beds. Due to an extreme shortage of health-care professionals in Wuhan, thousands of medical staff from all over China came voluntarily to the epicenter to offer their support. After no new deaths reported for first time, China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong SAR (China) CHP: COVID-2019: NoP: Confirmed: Case Classification (CC): Imported data was reported at 7.000 Person in 29 Jan 2023. This records an increase from the previous number of 5.000 Person for 28 Jan 2023. Hong Kong SAR (China) CHP: COVID-2019: NoP: Confirmed: Case Classification (CC): Imported data is updated daily, averaging 6.000 Person from Jan 2020 (Median) to 29 Jan 2023, with 1103 observations. The data reached an all-time high of 1,117.000 Person in 29 Dec 2022 and a record low of 0.000 Person in 27 Jan 2023. Hong Kong SAR (China) CHP: COVID-2019: NoP: Confirmed: Case Classification (CC): Imported data remains active status in CEIC and is reported by Centre for Health Protection. The data is categorized under High Frequency Database’s Disease Outbreaks – Table HK.D001: Centre for Health Protection: Coronavirus Disease 2019 (COVID-2019). The case classification may be subject to changes when there is new information available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics of TCIM user and non-user during COVID-19 (n = 632).
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset contains COVID-19 cases, recovered and deaths, daily reported by prefecture level from the website DXY.cn which collect public data from National Health Commission, provincial health commission, provincial governments, Hong Kong official channel, Macao official channel and Taiwan official channel. The data are extracted in a CSV format everyday at 16:00 EST. The name of the prefecture, province and country are translated by using Google Translate.
In Hong Kong, COVID-19 had the largest number of cases among all the infectious diseases in 2021, with more than ***** notified cases. The second-highest number of infectious diseases recorded in Hong Kong was tuberculosis, followed by chickenpox.
The new SARS-like coronavirus has spread around China since its outbreak in Wuhan - the capital of central China’s Hubei province. As of June 7, 2022, there were 2,785,848 active cases with symptoms in Greater China. The pandemic has caused a significant impact in the country's economy.
Fast-moving epidemic
In Wuhan, over 3.8 thousand deaths were registered in the heart of the outbreak. The total infection number surged on February 12, 2020 in Hubei province. After a change in official methodology for diagnosing and counting cases, thousands of new cases were added to the total figure. There is little knowledge about how the virus that originated from animals transferred to humans. While human-to-human transmission has been confirmed, other transmission routes through aerosol and fecal-oral are also possible. The deaths from the current virus COVID-19 (formally known as 2019-nCoV) has surpassed the toll from the SARS epidemic of 2002 and 2003.
Key moments in the Chinese coronavirus timeline
The doctor in Wuhan, Dr. Li Wenliang, who first warned about the new strain of coronavirus was silenced by the police. It was announced on February 7, 2020 that he died from the effects of the coronavirus infection. His death triggered a national backlash over freedom of speech on Chinese social media. On March 18, 2020, the Chinese government reported no new domestically transmissions for the first time after a series of quarantine and social distancing measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China started reporting the infection number of symptom-free individuals who tested positive for coronavirus. Before that, asymptomatic cases had not been included in the Chinese official count. China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country. On April 17, 2020, health authorities in Wuhan revised its death toll, adding some 1,290 fatalities in its total count.
The coronavirus (COVID-19) pandemic has spread swiftly from the Chinese city Wuhan across the world. In Hong Kong, the number of active cases amounted to 260,919 with 9,389 deaths as of June 7, 2022. The financial hub was one of the places which were able to flatten the pandemic curve for a long time before the Omicron variant. To boost the low inoculation rate, Hong Kong government has widened the COVID-19 vaccine access to all residents aged 16 and older.