9 datasets found
  1. Flood Hazard Areas (DFIRM) - Honolulu County

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +3more
    Updated Sep 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2021). Flood Hazard Areas (DFIRM) - Honolulu County [Dataset]. https://opendata.hawaii.gov/dataset/flood-hazard-areas-dfirm-honolulu-county
    Explore at:
    geojson, zip, arcgis geoservices rest api, csv, html, kml, pdf, ogc wms, ogc wfsAvailable download formats
    Dataset updated
    Sep 18, 2021
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    Office of Planning
    Area covered
    Honolulu County
    Description

    [Metadata] Flood Hazard Areas for the County of Honolulu - downloaded from FEMA Flood Map Service Center, May 1, 2021. The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.

    For additional information, please summary metadata https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  2. a

    1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Molokai

    • hub.arcgis.com
    • opendata.hawaii.gov
    • +1more
    Updated Feb 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2021). 1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Molokai [Dataset]. https://hub.arcgis.com/datasets/cacee8d442624c719902ac599070f116
    Explore at:
    Dataset updated
    Feb 11, 2021
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.

  3. H

    1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Oahu

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +1more
    Updated Mar 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2022). 1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Oahu [Dataset]. https://opendata.hawaii.gov/dataset/1-coastal-flood-zone-with-3-2-ft-sea-level-rise-oahu
    Explore at:
    arcgis geoservices rest api, zip, kml, csv, html, ogc wfs, geojson, ogc wmsAvailable download formats
    Dataset updated
    Mar 10, 2022
    Dataset provided by
    Tetra Tech EM Inc
    Authors
    Office of Planning
    Area covered
    O‘ahu
    Description

    [Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.

    SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.

    The State of Hawaii 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.

    The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.

    A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a).

    The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).

    Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.

    Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.

    Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise.

    Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.

  4. h

    1 Pct Coastal Flood Zone with 3.2 ft Sea Level Rise - Statewide

    • geoportal.hawaii.gov
    • opendata.hawaii.gov
    • +1more
    Updated Oct 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2017). 1 Pct Coastal Flood Zone with 3.2 ft Sea Level Rise - Statewide [Dataset]. https://geoportal.hawaii.gov/datasets/1-pct-coastal-flood-zone-with-3-2-ft-sea-level-rise-statewide/api
    Explore at:
    Dataset updated
    Oct 2, 2017
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.

  5. h

    1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Kauai

    • geoportal.hawaii.gov
    Updated Oct 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Oct 2, 2017
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.

  6. a

    1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Lanai

    • prod-histategis.opendata.arcgis.com
    • opendata.hawaii.gov
    • +1more
    Updated Oct 2, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Statewide GIS Program (2017). 1% Coastal Flood Zone with 3.2 ft Sea Level Rise - Lanai [Dataset]. https://prod-histategis.opendata.arcgis.com/datasets/HiStateGIS::1-coastal-flood-zone-with-3-2-ft-sea-level-rise-lanai
    Explore at:
    Dataset updated
    Oct 2, 2017
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.

  7. Flood Hazard Areas (DFIRM) - Maui County

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +4more
    Updated Sep 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2021). Flood Hazard Areas (DFIRM) - Maui County [Dataset]. https://opendata.hawaii.gov/dataset/flood-hazard-areas-dfirm-maui-county
    Explore at:
    ogc wfs, pdf, ogc wms, arcgis geoservices rest api, zip, kml, csv, html, geojsonAvailable download formats
    Dataset updated
    Sep 18, 2021
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    Office of Planning
    Area covered
    Maui County
    Description

    [Metadata] Flood Hazard Areas for the County of Maui - downloaded from FEMA Flood Map Service Center, May 1, 2021. The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.

    For additional information, please summary metadata https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  8. DFIRM Letters of Map Revision (LOMR)

    • opendata.hawaii.gov
    • prod-histategis.opendata.arcgis.com
    • +3more
    Updated Mar 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2023). DFIRM Letters of Map Revision (LOMR) [Dataset]. https://opendata.hawaii.gov/dataset/dfirm-letters-of-map-revision-lomr
    Explore at:
    arcgis geoservices rest api, pdf, csv, geojson, ogc wfs, ogc wms, zip, kml, htmlAvailable download formats
    Dataset updated
    Mar 3, 2023
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    Office of Planning
    Description

    [Metadata] DFIRM LOMRs (Letters of Map Revision) for the State of Hawaii as of December, 2022.

    The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.

    The Statewide GIS Program created the statewide layer by merging all county layers (downloaded on May 1, 2021; Updated Feb 2023 - The Statewide GIS Program downloaded and added the Waipahu, Oahu area LOMR, which became effective on 12/6/22). For more information, please refer to summary metadata: https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_lomr.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  9. a

    Flood Hazard Areas (DFIRM) - Honolulu County

    • prod-histategis.opendata.arcgis.com
    Updated Jan 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Jan 3, 2021
    Dataset authored and provided by
    Hawaii Statewide GIS Program
    Area covered
    Description

    [Metadata] Flood Hazard Areas for the County of Honolulu - downloaded from FEMA Flood Map Service Center, May 1, 2021. The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.For additional information, please summary metadata https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office of Planning (2021). Flood Hazard Areas (DFIRM) - Honolulu County [Dataset]. https://opendata.hawaii.gov/dataset/flood-hazard-areas-dfirm-honolulu-county
Organization logo

Flood Hazard Areas (DFIRM) - Honolulu County

Explore at:
geojson, zip, arcgis geoservices rest api, csv, html, kml, pdf, ogc wms, ogc wfsAvailable download formats
Dataset updated
Sep 18, 2021
Dataset provided by
Federal Emergency Management Agencyhttp://www.fema.gov/
Authors
Office of Planning
Area covered
Honolulu County
Description

[Metadata] Flood Hazard Areas for the County of Honolulu - downloaded from FEMA Flood Map Service Center, May 1, 2021. The National Flood Hazard Layer (NFHL) data incorporates all Flood Insurance Rate Map (FIRM) databases published by the Federal Emergency Management Agency (FEMA), and any Letters of Map Revision (LOMRs) that have been issued against those databases since their publication date. It is updated on a monthly basis. The FIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by FEMA. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all FIRM Databases and corresponding LOMRs available on the publication date of the data set. The specification for the horizontal control of FIRM Databases is consistent with those required for mapping at a scale of 1:12,000. This file is georeferenced to the Earth's surface using the Geographic Coordinate System (GCS) and North American Datum of 1983.

For additional information, please summary metadata https://files.hawaii.gov/dbedt/op/gis/data/s_fld_haz_ar_state.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

Search
Clear search
Close search
Google apps
Main menu