43 datasets found
  1. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 11, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. e

    USCounties cases

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Apr 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CivicImpactJHU (2020). USCounties cases [Dataset]. https://coronavirus-resources.esri.com/datasets/4cb598ae041348fb92270f102a6783cb
    Explore at:
    Dataset updated
    Apr 11, 2020
    Dataset authored and provided by
    CivicImpactJHU
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US. Data is pulled from the Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, the Red Cross, the Census American Community Survey, and the Bureau of Labor and Statistics, and aggregated at the US county level. This web map created and maintained by the Centers for Civic Impact at the Johns Hopkins University, and is supported by the Esri Living Atlas team and JHU Data Services. It is used in the COVID-19 United States Cases by County dashboard. For more information on Johns Hopkins University’s response to COVID-19, visit the Johns Hopkins Coronavirus Resource Center where our experts help to advance understanding of the virus, inform the public, and brief policymakers in order to guide a response, improve care, and save lives.

  4. COVID-19 Trends in Each Country

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-resources.esri.com/maps/UrbanObservatory::covid-19-trends-in-each-country/about
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  5. New Cases of COVID-19 In World Countries

    • kaggle.com
    Updated Apr 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mehmet Akturk (2020). New Cases of COVID-19 In World Countries [Dataset]. https://kaggle.com/mathchi/new-cases-of-covid19-in-world-countries
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 26, 2020
    Dataset provided by
    Kaggle
    Authors
    Mehmet Akturk
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Has the curve flattened?

    Countries around the world are working to “flatten the curve” of the coronavirus pandemic. Flattening the curve involves reducing the number of new COVID-19 cases from one day to the next. This helps prevent healthcare systems from becoming overwhelmed. When a country has fewer new COVID-19 cases emerging today than it did on a previous day, that’s a sign that the country is flattening the curve.

    On a trend line of total cases, a flattened curve looks how it sounds: flat. On the charts on this page, which show new cases per day, a flattened curve will show a downward trend in the number of daily new cases.

    This analysis uses a 5-day moving average to visualize the number of new COVID-19 cases and calculate the rate of change. This is calculated for each day by averaging the values of that day, the two days before, and the two next days. This approach helps prevent major events (such as a change in reporting methods) from skewing the data. The interactive charts below show the daily number of new cases for the 10 most affected countries, based on the reported number of deaths by COVID-19.

    This datas were last updated on Saturday, April 25, 2020 at 11:51 PM EDT.

  6. COVID-19 US County JHU Data & Demographics

    • kaggle.com
    zip
    Updated Jun 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heads or Tails (2020). COVID-19 US County JHU Data & Demographics [Dataset]. https://www.kaggle.com/headsortails/covid19-us-county-jhu-data-demographics
    Explore at:
    zip(18275905 bytes)Available download formats
    Dataset updated
    Jun 10, 2020
    Authors
    Heads or Tails
    Area covered
    United States
    Description

    Context

    The United States have recently become the country with the most reported cases of 2019 Novel Coronavirus (COVID-19). This dataset contains daily updated number of reported cases & deaths in the US on the state and county level, as provided by the Johns Hopkins University. In addition, I provide matching demographic information for US counties.

    Content

    The dataset consists of two main csv files: covid_us_county.csv and us_county.csv. See the column descriptions below for more detailed information. In addition, I've added US county shape files for geospatial plots: us_county.shp/dbf/prj/shx.

    • covid_us_county.csv: COVID-19 cases and deaths which will be updated daily. The data is provided by the Johns Hopkins University through their excellent github repo. I combined the separate "confirmed cases" and "deaths" files into a single table, removed a few (I think to be) redundant geo identifier columns, and reshaped the data into long format with a single date column. The earliest recorded cases are from 2020-01-22.

    • us_counties.csv: Demographic information on the US county level based on the (most recent) 2014-18 release of the Amercian Community Survey. Derived via the great tidycensus package.

    Column Description

    COVID-19 dataset covid_us_county.csv:

    • fips: County code in numeric format (i.e. no leading zeros). A small number of cases have NA values here, but can still be used for state-wise aggregation. Currently, this only affect the states of Massachusetts and Missouri.

    • county: Name of the US county. This is NA for the (aggregated counts of the) territories of American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and Virgin Islands.

    • state: Name of US state or territory.

    • state_code: Two letter abbreviation of US state (e.g. "CA" for "California"). This feature has NA values for the territories listed above.

    • lat and long: coordinates of the county or territory.

    • date: Reporting date.

    • cases & deaths: Cumulative numbers for cases & deaths.

    Demographic dataset us_counties.csv:

    • fips, county, state, state_code: same as above. The county names are slightly different, but mostly the difference is that this dataset has the word "County" added. I recommend to join on fips.

    • male & female: Population numbers for male and female.

    • population: Total population for the county. Provided as convenience feature; is always the sum of male + female.

    • female_percentage: Another convenience feature: female / population in percent.

    • median_age: Overall median age for the county.

    Acknowledgements

    Data provided for educational and academic research purposes by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).

    Licence

    The github repo states that:

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
    

    Version history

    • In version 1, a small number of cases had values of `county == "Unassigned". Those have been superseded.
    • Version 5: added US county shape files
  7. Weekly Summary of U.S. COVID-19 Trends

    • beta-search-prod-pre-a-hub.hub.arcgis.com
    Updated Jul 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Weekly Summary of U.S. COVID-19 Trends [Dataset]. https://beta-search-prod-pre-a-hub.hub.arcgis.com/datasets/UrbanObservatory::weekly-summary-of-u-s-covid-19-trends-1
    Explore at:
    Dataset updated
    Jul 4, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    United States
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This map is updated weekly and currently shows data through Mar 5, 2023. Notes: as of 5/25/2021, Nebraska stopped sharing COVID-19 testing and on 9/26/21 began, but with a lump sum for the previous four months. Nebraska's reporting became unconsumable by JHU on July 1, 2022. Maryland stopped reporting results for several weeks on 12/4/2021 due to a website hack.It shows COVID-19 Trend for the most recent Monday with a colored dot for each county. The larger the dot, the longer the county has had this trend.Includes Puerto Rico, Guam, Northern Marianas, U.S. Virgin Islands.The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility.Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 1, 2020.For more information about COVID-19 trends, see the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.

  8. a

    JHU Centers for Civic Impact Covid-19 County Cases (Daily Update)

    • hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Apr 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CivicImpactJHU (2020). JHU Centers for Civic Impact Covid-19 County Cases (Daily Update) [Dataset]. https://hub.arcgis.com/maps/4cb598ae041348fb92270f102a6783cb
    Explore at:
    Dataset updated
    Apr 11, 2020
    Dataset authored and provided by
    CivicImpactJHU
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US. Data is pulled from the Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, the Red Cross, the Census American Community Survey, and the Bureau of Labor and Statistics, and aggregated at the US county level. This web map created and maintained by the Centers for Civic Impact at the Johns Hopkins University, and is supported by the Esri Living Atlas team and JHU Data Services. It is used in the COVID-19 United States Cases by County dashboard. For more information on Johns Hopkins University’s response to COVID-19, visit the Johns Hopkins Coronavirus Resource Center where our experts help to advance understanding of the virus, inform the public, and brief policymakers in order to guide a response, improve care, and save lives.

  9. Coronavirus COVID-19 Global Cases Dashboard from Johns Hopkins University

    • healthdata.gov
    • data.colorado.gov
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.colorado.gov (2025). Coronavirus COVID-19 Global Cases Dashboard from Johns Hopkins University [Dataset]. https://healthdata.gov/State/Coronavirus-COVID-19-Global-Cases-Dashboard-from-J/vrfm-d4r7
    Explore at:
    application/rdfxml, xml, tsv, application/rssxml, json, csvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.colorado.gov
    Description

    Global Map of Coronavirus cases

  10. a

    Link to COVID-19 Trends for U.S. Counties - (Originally Published by Esri)

    • chi-phi-nmcdc.opendata.arcgis.com
    • hub.arcgis.com
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2020). Link to COVID-19 Trends for U.S. Counties - (Originally Published by Esri) [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/link-to-covid-19-trends-for-u-s-counties-originally-published-by-esri
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.The maps in this series depict the current trends of the COVID-19 pandemic in the United States at the level of counties or territories. Includes Puerto Rico, Guam, Northern Marianas, U.S. Virgin Islands. These maps are updated daily.

  11. a

    What are the COVID-19 trends in my area?

    • hub.arcgis.com
    • hub.scag.ca.gov
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). What are the COVID-19 trends in my area? [Dataset]. https://hub.arcgis.com/maps/85989e671a2345d19139a6ca254d7169
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This map shows recent COVID-19 Trends with arrows that represent each county's recent trend history, and weekly new case counts for U.S. counties. The map data is updated weekly and featured in this storymap.It shows COVID-19 Trend for the most recent Monday with a colored arrow for each county. The larger the arrow, the longer the county has had this trend. An up arrow indicates the number of active cases continue upward. A down arrow indicates the number of active cases is going down. The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility.Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 1, 2020. This map is updated every Tuesday based on data through the previous Sunday. See also this version of the map for additional perspective.COVID-19 Trends show how each county is doing and are updated daily. We base the trend assignment on the number of new cases in the past two weeks and the number of active cases per 100,000 people. To learn the details for how trends are assigned, see the full methodology. There are five trends:Emergent - New cases for the first time or in counties that have had zero new cases for 60 or more days.Spreading - Low to moderate rates of new cases each day. Likely controlled by local policies and individuals taking measures such as wearing masks and curtailing unnecessary activities.Epidemic - Accelerating and uncontrolled rates of new cases.Controlled - Very low rates of new cases.End Stage - One or fewer new cases every 5 days in larger populations and fewer in rural areas.For more information about COVID-19 trends, see the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.

  12. COVID-19 data available by county from Johns Hopkins University (ArcGIS...

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). COVID-19 data available by county from Johns Hopkins University (ArcGIS Blog) [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/datasets/covid-19-data-available-by-county-from-johns-hopkins-university-arcgis-blog
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    COVID-19 data available by county from Johns Hopkins University (ArcGIS Blog).Johns Hopkins University is now providing data in a map layer by county for COVID-19 cases and deaths. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. See the FAQ or contact Johns Hopkins for more information._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  13. A

    USCounties time

    • data.amerigeoss.org
    csv, esri rest +2
    Updated Aug 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). USCounties time [Dataset]. https://data.amerigeoss.org/da_DK/dataset/uscounties-time
    Explore at:
    esri rest, csv, html, geojsonAvailable download formats
    Dataset updated
    Aug 10, 2020
    Dataset provided by
    ESRI
    Description

    This feature layer contains the most up-to-date COVID-19 cases for the US. Data is pulled from the Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, the Red Cross, the Census American Community Survey, and the Bureau of Labor and Statistics, and aggregated at the US county level.


    This web map created and maintained by the Centers for Civic Impact at the Johns Hopkins University, and is supported by the Esri Living Atlas team and JHU Data Services. It is used in the COVID-19 United States Cases by County dashboard.

    For more information on Johns Hopkins University’s response to COVID-19, visit the Johns Hopkins Coronavirus Resource Center where our experts help to advance understanding of the virus, inform the public, and brief policymakers in order to guide a response, improve care, and save lives.

  14. M

    COVID-19 Confirmed and Forecasted Case Data

    • catalog.midasnetwork.us
    csv
    Updated Sep 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Los Alamos National Laboratory (2021). COVID-19 Confirmed and Forecasted Case Data [Dataset]. https://catalog.midasnetwork.us/collection/128
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 27, 2021
    Dataset provided by
    MIDAS COORDINATION CENTER
    Authors
    Los Alamos National Laboratory
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Time period covered
    Jan 25, 2020 - Nov 6, 2021
    Area covered
    State, Country
    Variables measured
    Viruses, disease, COVID-19, modeling, pathogen, forecasting, Homo sapiens, host organism, mortality data, modeling method, and 8 more
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    The model forecasts the number of future confirmed cases and deaths as reported by the John Hopkins University Coronavirus Resource Center Dashboard (https://coronavirus.jhu.edu/map.html). The model forecasts are probabilitics and are done for any United States of America state that has at least one confirmed COVID-19 case/death and any country with at least 100 confirmed COVID-19 cases and 20 deaths. They updated 2 times a week until 2021-09-27, and the output of the forecasts and incidences are available in visualization on the website and in CSV format at country level and at state level for the US. The code of the model is not publicly available.

  15. d

    COVID-19 geovisualizations understanding survey

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rezk, Ahmed (2023). COVID-19 geovisualizations understanding survey [Dataset]. http://doi.org/10.7910/DVN/UBEYLR
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Rezk, Ahmed
    Description

    A survey conducted to assess users understanding of four COVID-19 geovisualizations. Map 1: Bing covid tracker Map 2: ECDC covid map Map 3: Johns Hopkins CSSE covid dashboard Map 4: WHO covid dashboard

  16. a

    Link to COVID-19 Trends for U.S. Counties - (Originally Published by Esri)

    • hub.arcgis.com
    Updated May 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2020). Link to COVID-19 Trends for U.S. Counties - (Originally Published by Esri) [Dataset]. https://hub.arcgis.com/documents/2c589cdc90224f4692a931d51e5a0a07
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.The maps in this series depict the current trends of the COVID-19 pandemic in the United States at the level of counties or territories. Includes Puerto Rico, Guam, Northern Marianas, U.S. Virgin Islands. These maps are updated daily.

  17. g

    Coronavirus (Covid19) — Evolution by country and around the world (daily...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus (Covid19) — Evolution by country and around the world (daily maj) [Dataset]. https://gimi9.com/dataset/eu_5e5da8356f44412b1755a8f6/
    Explore at:
    Area covered
    World
    Description

    [Edit 12/09/2020] You will now find in the files below the last 30 days, too many people do not respect the request not to recover too often the dataset (no interest in recovering every minute while the file changes 4 or 5 times a day) If you want access to the entire history, contact me [Edit 31/03/2020] Since yesterday, I made sure to have the data of the day since the ESSC, so the data of the same day are now available and updated several times a day (about every hour) as the new figures fall all over the world. The data of the previous day is always consolidated around 2am (it is no longer 1h since the time change). If you only want to have the complete data, just don't take into account the last day (today’s date) Here I share the data that I compile with the famous coronavirus infection world map created and maintained by The Johns Hopkins University and which serve me to display ** CoronaVirus statistics worldwide and by country** They share the day’s data each night on a GitHub deposit. My tools compile this new data as soon as they are available and I share the result here. This data is used to display tables and graphs on the CoronaVirus website (Covid19) of Politologue.com https://coronavirus.politologue.com/ This data will allow you to make your own graphs and analyses if you look at the subject. I do not oblige you to do it, but if my compilation allows you to do something about it and saved you time, a link to https://coronavirus.politologue.com/ will be appreciable. Information in files (csv and json) — Number of cases — Number of deaths — Number of healing — Death rate (percentage) — Healing rate (percentage) — Infection rate (persons still infected, not deceased or cured) (percentage) — And for data by country, you will find a field “country” If you integrate the client-side json or csv on a site or application, please keep a cache on your servers without risking an unexpected load on my servers. Coronavirus evolution

  18. o

    CoronaNet COVID-19 Policy Responses: Taxonomy Maps and Data for Data...

    • openicpsr.org
    delimited
    Updated Nov 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cindy Cheng; Luca Messerschmidt; Isaac Bravo; Marco Waldbauer; Rohan Bhavikatti; Caress Schenk; Vanja Grujic; Timothy Model; Robert Kubinec; Joan Barceló (2023). CoronaNet COVID-19 Policy Responses: Taxonomy Maps and Data for Data Harmonization [Dataset]. http://doi.org/10.3886/E195081V2
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Nov 11, 2023
    Dataset provided by
    Delve
    Universidade de Brasília
    Nazarbayev University,
    Technical University of Munich
    New York University Abu Dhabi
    Authors
    Cindy Cheng; Luca Messerschmidt; Isaac Bravo; Marco Waldbauer; Rohan Bhavikatti; Caress Schenk; Vanja Grujic; Timothy Model; Robert Kubinec; Joan Barceló
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2019 - Sep 21, 2021
    Area covered
    World
    Description

    This deposit contains the taxonomy maps and data we used to translate data on COVID-19 government responses from 7 different datasets into taxonomy developed by the CoronaNet Research Project (CoronaNet; Cheng et al 2020). These taxonomy maps form the basis of our efforts to harmonize this data into the CoronaNet database. The following taxonomy maps are deposited in the 'Taxonomy' folder:ACAPS COVID-19 Government Measures - CoronaNet Taxonomy Map Canadian Data Set of COVID-19 Interventions from the Canadian Institute for Health Information (CIHI) - CoronaNet Taxonomy Map COVID Analysis and Maping of Policies (COVID AMP) - CoronaNet Taxonomy Map Johns Hopkins Health Intervention Tracking for COVID-19 (HIT-COVID) - CoronaNet Taxonomy Map Oxford Covid-19 Government Response Tracker (OxCGRT) - CoronaNet Taxonomy Map World Health Organisation Public Health and Safety Measures (WHO PHSM) - CoronaNet Taxonomy MapMeanwhile the 'Data' folder contains the raw and mapped data for each external dataset (i.e. ACAPS, CIHI, COVID AMP, HIT-COVID, OxCGRT and WHO PHSM) as well as the combined external data for Steps 1 and 3 of the data harmonization process described in Cheng et al (2023) 'Harmonizing Government Responses to the COVID-19 Pandemic.'

  19. d

    LA County COVID Cases

    • catalog.data.gov
    • data.lacity.org
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). LA County COVID Cases [Dataset]. https://catalog.data.gov/dataset/la-county-covid-cases
    Explore at:
    Dataset updated
    Jul 19, 2025
    Dataset provided by
    data.lacity.org
    Area covered
    Los Angeles County
    Description

    COVID cases and deaths for LA County and California State. Updated daily. Data source: Johns Hopkins University (https://coronavirus.jhu.edu/us-map), Johns Hopkins GitHub (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.

  20. EPA Facilities Status Dashboard

    • s.cnmilf.com
    • gimi9.com
    • +1more
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). EPA Facilities Status Dashboard [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/epa-facilities-status-dashboard
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    A portion of the data used is publicly available through John Hopkins Coronavirus Resource Center and CDC COVID Data Tracker. Another portion data is password protected through HHS Protect. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: https://covid.cdc.gov/covid-data-tracker/#county-view and https://coronavirus.jhu.edu/map.html. For the data through HHS Protect, interested parties must submit a request to HHS. Format: Much of the data is publicly available at https://coronavirus.jhu.edu/map.html and https://covid.cdc.gov/covid-data-tracker/#county-view. What is not publicly available is through HHS Protect which is password protected. This dataset is associated with the following publication: Baxter, L., J. Baynes, A. Weaver, A. Neale, T. Wade, M. Mehaffey, D. Lobdell, K. Widener, and W. Cascio. Development of the United States Environmental Protection Agency’s Facilities Status Dashboard for the COVID-19 Pandemic: Approach and Challenges.. International Journal of Public Health. Springer Basel AG, Basel, SWITZERLAND, 61(1604761): 9, (2022).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)

Explore at:
Dataset provided by
Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
Area covered
Global
Description

2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

  • Confirmed Cases by Country/Region/Sovereignty
  • Confirmed Cases by Province/State/Dependency
  • Deaths
  • Recovered

Downloadable data:
https://github.com/CSSEGISandData/COVID-19

Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov

Search
Clear search
Close search
Google apps
Main menu