Facebook
TwitterOn March 31, 2024, there were 50 critical care (CC) beds in England occupied with patients who had tested positive for COVID-19. The number of critical care beds occupied with COVID patients peaked in England on January 22, 2021 when 4,096 patients required critical care treatment. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, hospitalizations, testing, and vaccinations as well as other variables of potential interest.
The variables represent all data related to confirmed cases, deaths, hospitalizations, and testing, as well as other variables of potential interest.
the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, reproduction_rate, icu_patients, icu_patients_per_million, hosp_patients, hosp_patients_per_million, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions, weekly_hosp_admissions_per_million, total_tests, new_tests, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed, new_tests_smoothed_per_thousand, positive_rate, tests_per_case, tests_units, total_vaccinations, people_vaccinated, people_fully_vaccinated, new_vaccinations, new_vaccinations_smoothed, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, new_vaccinations_smoothed_per_million, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index
https://systems.jhu.edu/research/public-health/ncov/ https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19 https://coronavirus.data.gov.uk/details/healthcare https://covid19tracker.ca/ https://healthdata.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-state-timeseries https://ourworldindata.org/coronavirus-testing#our-checklist-for-covid-19-testing-data
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Daily official UK Covid data. The data is available per country (England, Scotland, Wales and Northern Ireland) and for different regions in England. The different regions are split into two different files as part of the data is directly gathered by the NHS (National Health Service). The files that contain the word 'nhsregion' in their name, include data related to hospitals only, such as number of admissions or number of people in respirators. The files containing the word 'region' in their name, include the rest of the data, such as number of cases, number of vaccinated people or number of tests performed per day. The next paragraphs describe the columns for the different file types.
Files related to regions (word 'region' included in the file name) have the following columns: - "date": date in YYYY-MM-DD format - "area type": type of area covered in the file (region or nation) - "area name": name of area covered in the file (region or nation name) - "daily cases": new cases on a given date - "cum cases": cumulative cases - "new deaths 28days": new deaths within 28 days of a positive test - "cum deaths 28days": cumulative deaths within 28 days of a positive test - "new deaths_60days": new deaths within 60 days of a positive test - "cum deaths 60days": cumulative deaths within 60 days of a positive test - "new_first_episode": new first episodes by date - "cum_first_episode": cumulative first episodes by date - "new_reinfections": new reinfections by specimen data - "cum_reinfections": cumualtive reinfections by specimen data - "new_virus_test": new virus tests by date - "cum_virus_test": cumulative virus tests by date - "new_pcr_test": new PCR tests by date - "cum_pcr_test": cumulative PCR tests by date - "new_lfd_test": new LFD tests by date - "cum_lfd_test": cumulative LFD tests by date - "test_roll_pos_pct": percentage of unique case positivity by date rolling sum - "test_roll_people": unique people tested by date rolling sum - "new first dose": new people vaccinated with a first dose - "cum first dose": cumulative people vaccinated with a first dose - "new second dose": new people vaccinated with a first dose - "cum second dose": cumulative people vaccinated with a first dose - "new third dose": new people vaccinated with a booster or third dose - "cum third dose": cumulative people vaccinated with a booster or third dose
Files related to countries (England, Northern Ireland, Scotland and Wales) have the above columns and also: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
Files related to nhsregion (word 'nhsregion' included in the file name) have the following columns: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
It's worth noting that the dataset hasn't been cleaned and it needs cleaning. Also, different files have different null columns. This isn't an error in the dataset but the way different countries and regions report the data.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The purpose of this initiative is to build an integrated dataset on Intensive Care Units (ICUs) and their availability by country and region (at the highest regional granularity provided by the sources), using a data model standardized across countries.
Currently, ICU data is stored in different country-specific sources, with a wide range of access points (national websites, APIs, excel or csv files, etc.)
Given current COVID-19 crisis, we believe that this information should be provided with the following: * common standardized structure * single point of access * open to the public
We hope that these datasets will further benefit researchers and help us in the fight against COVID-19.
Facebook
Twitterhttps://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
DECOVID, a multi-centre research consortium, was founded in March 2020 by two United Kingdom (UK) National Health Service (NHS) Foundation Trusts (comprising three acute care hospitals) and three research institutes/universities: University Hospitals Birmingham (UHB), University College London Hospitals (UCLH), University of Birmingham, University College London and The Alan Turing Institute. The original aim of DECOVID was to share harmonised electronic health record (EHR) data from UCLH and UHB to enable researchers affiliated with the DECOVID consortium to answer clinical questions to support the COVID-19 response. The DECOVID database has now been placed within the infrastructure of PIONEER, a Health Data Research (HDR) UK funded data hub that contains data from acute care providers, to make the DECOVID database accessible to external researchers not affiliated with the DECOVID consortium.
This highly granular dataset contains 256,804 spells and 165,414 hospitalised patients. The data includes demographics, serial physiological measurements, laboratory test results, medications, procedures, drugs, mortality and readmission.
Geography: UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & > 120 ITU bed capacity. UCLH provides first-class acute and specialist services in six hospitals in central London, seeing more than 1 million outpatient and 100,000 admissions per year. Both UHB and UCLH have fully electronic health records. Data has been harmonised using the OMOP data model. Data set availability: Data access is available via the PIONEER Hub for projects which will benefit the public or patients. This can be by developing a new understanding of disease, by providing insights into how to improve care, or by developing new models, tools, treatments, or care processes. Data access can be provided to NHS, academic, commercial, policy and third sector organisations. Applications from SMEs are welcome. There is a single data access process, with public oversight provided by our public review committee, the Data Trust Committee. Contact pioneer@uhb.nhs.uk or visit www.pioneerdatahub.co.uk for more details.
Available supplementary data: Matched controls; ambulance and community data. Unstructured data (images). We can provide the dataset in other common data models and can build synthetic data to meet bespoke requirements.
Available supplementary support: Analytics, model build, validation & refinement; A.I. support. Data partner support for ETL (extract, transform & load) processes. Bespoke and “off the shelf” Trusted Research Environment (TRE) build and run. Consultancy with clinical, patient & end-user and purchaser access/ support. Support for regulatory requirements. Cohort discovery. Data-driven trials and “fast screen” services to assess population size.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
Twitterhttps://digital.nhs.uk/services/data-access-request-service-darshttps://digital.nhs.uk/services/data-access-request-service-dars
Data forming the COVID-19 SARI-Watch data set relate to demographic, risk factor, treatment, and outcome information for patients admitted to hospital with a confirmed COVID-19 diagnosis, as recorded in the PHE COVID-19 SARI-Watch Surveillance System.
SARI-Watch data are to be collected for the purposes of direct care, service monitoring, planning and research in response to the spread of COVID-19, including for the following purposes identified in the COVID-19 Directions (see below): •understanding information about patient access to health services and adult social care services as a direct or indirect result of COVID-19 and the availability and capacity of those services •monitoring and managing the response to COVID-19 by health and social care bodies and the Government, including providing information to the public about COVID-19 and its effectiveness, and information about capacity, medicines, equipment, supplies, services and the workforce within the health services and adult social care services •research and planning in relation to COVID-19, such as providing COVID-19 diagnosis.
Timescales for dissemination can be found under 'Our Service Levels' at the following link: https://digital.nhs.uk/services/data-access-request-service-dars/data-access-request-service-dars-process Standard wording
NHS Digital will only disseminate SARI-Watch data collected from PHE where the information is linked to other information controlled by NHS Digital.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThroughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future.MethodsIn this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital.ResultsOur results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times.DiscussionThese analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Why did I create this dataset? This is my first time creating a notebook in Kaggle and I am interested in learning more about COVID-19 and how different countries are affected by it and why. It might be useful to compare different metrics between different countries. And I also wanted to participate in a challenge, and I've decided to join the COVID-19 datasets challenge. While looking through the projects, I noticed https://www.kaggle.com/koryto/countryinfo and it inspired me to start this project.
My approach is to scour the Internet and Kaggle looking for country data that can potentially have an impact on how the COVID-19 pandemic spreads. In the end, I ended up with the following for each country:
See covid19_data - data_sources.csv for data source details.
Notebook: https://www.kaggle.com/bitsnpieces/covid19-data
Since I did not personally collect each datapoint, and because each datasource is different with different objectives, collected at different times, measured in different ways, any inferences from this dataset will need further investigation.
I want to acknowledge the authors of the datasets that made their data publicly available which has made this project possible. Banner image is by Brian.
I hope that the community finds this dataset useful. Feel free to recommend other datasets that you think will be useful / relevant! Thanks for looking.
Facebook
Twitterhttps://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Facebook
TwitterThis is a collection of dataset that I personally think it is useful in analysing COVID19 data. Since all of the data comes from the internet and majority of them originated from World Bank, I am use some Kaggle users has already uploaded similar data. However, I think it makes my life (and perhaps yours) easier by compiling all of these data together.
The following are some remarks for the dataset-
Facebook
Twitterhttps://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
PIONEER: Deeply-phenotyped hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 4.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases& more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS)& death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – May 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes but also primary care records& clinic letters. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT, MRI, ultrasound).
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the UK Hospital Supplies Industry market was valued at USD 29.5 Billion in 2023 and is projected to reach USD 34.7 Billion by 2032, with an expected CAGR of 5.60% during the forecast period. Recent developments include: In April 2022, the United Kingdom donated to Ukraine 5.29 million items of medical supplies to help the country cope with the medical emergency, which includes lifesaving medicines, wound packs, and intensive care equipment., In July 2020, BD (Becton, Dickinson, and Company) announced the receipt of a large pandemic order from the United Kingdom (U.K.) government for 65 million needles and syringes to be d.elivered by mid-September 2020 to support the U.K. vaccination effort for COVID-19.. Key drivers for this market are: The aging population in the UK is leading to a higher prevalence of chronic diseases, such as diabetes, cardiovascular diseases, and other age-related conditions. This demographic shift drives demand for hospital supplies and medical services. . Potential restraints include: The UK healthcare system operates under a budget-constrained model, which can pressure hospitals to control costs. This may limit their ability to invest in advanced hospital supplies and technologies. . Notable trends are: There is a growing trend toward the use of disposable medical supplies in hospitals due to concerns about infection control and convenience. The demand for single-use products is expected to rise, particularly in surgical and emergency care settings. .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An overview of the data driven themes and how they relate to normalisation process theory.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This publication provides the most detailed picture available of people who used NHS funded secondary mental health, learning disabilities and autism services in England during the financial year 2021-22. All the analysis included in this publication can be found in the reference data tables, and in the associated machine-readable data file. Information you need to know about the quality of these statistics and how they can be interpreted can be found in the main report. An interactive report is also available allowing you to explore some statistics in further detail. Demographic analysis (age, gender, ethnicity and Index of Multiple Deprivation) is presented for 2021-22. Please consult previous editions of this publication series for demographic analysis for previous years. All annual and monthly publications relating to uses of mental health, learning disabilities and autism services can be found in the related links below. Please note: This publication covers the 2021-22 reporting year and will likely show some of the impacts of COVID-19 however there were no official lockdowns during the period. In places comparisons are made to the 2020-21 reporting year which did feature the impact of the COVID-19 and COVID-19 lockdowns during the pandemic in England. NHS Digital is continually working to improve the relevance and usefulness of content in the Mental Health Bulletin. As a result this annual report includes the addition of a number of new reference tables. These tables have been split out by geographical breakdown and with a focus on inpatients or outpatients. Improvements to the publication page have also been made to improve accessibility.
Facebook
TwitterCommunity Acquired Pneumonia (CAP) is the leading cause of infectious death and the third leading cause of death globally. Disease severity and outcomes are highly variable, dependent on host factors (such as age, smoking history, frailty and comorbidities), microbial factors (the causative organism) and what treatments are given. Clinical decision pathways are complex and despite guidelines, there is significant national variability in how guidelines are adhered to and patient outcomes.
For clinicians treating pneumonia in the hospital setting, care of these patients can be challenging. Key decisions include the type of antibiotics (oral or intravenous), the appropriate place of care (home, hospital or intensive care), and when it is appropriate to stop antibiotics. Decision support tools to help inform clinical management would be highly valuable to the clinical community.
This dataset is synthetic, formed from statistical modelling using real patient data, and represents a population with significant diversity in terms of patient demography, socio-economic status, CAP severity, treatments and outcomes. It can be used to develop code for deployment on real data, train data analysts and increase familiarity with this disease and its management.
PIONEER geography: The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix.
EHR. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. This synthetic dataset has been modelled to reflect data collected from this EHR.
Scope: A synthetic dataset which has been statistically modelled on all hospitalised patients admitted to UHB with Community Acquired Pneumonia. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to process of care including timings, admissions, escalation of care to ITU, discharge outcomes, physiology readings (heart rate, blood pressure, AVPU score and others), blood results and drug prescribing and administration.
Available supplementary data: Matched synthetic controls; ambulance, OMOP data, real patient CAP data. Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Facebook
Twitterhttps://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
Background. Chronic obstructive pulmonary disease (COPD) is a debilitating lung condition characterised by progressive lung function limitation. COPD is an umbrella term and encompasses a spectrum of pathophysiologies including chronic bronchitis, small airways disease and emphysema. COPD caused an estimated 3 million deaths worldwide in 2016, and is estimated to be the third leading cause of death worldwide. The British Lung Foundation (BLF) estimates that the disease costs the NHS around £1.9 billion per year. COPD is therefore a significant public health challenge. This dataset explores the impact of hospitalisation in patients with COPD during the COVID pandemic.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. There are particularly high rates of physical inactivity, obesity, smoking & diabetes. The West Midlands has a high prevalence of COPD, reflecting the high rates of smoking and industrial exposure. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.
Scope: All hospitalised patients admitted to UHB during the COVID-19 pandemic first wave, curated to focus on COPD. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes ICD-10 & SNOMED-CT codes pertaining to COPD and COPD exacerbations, as well as all co-morbid conditions. Serial, structured data pertaining to process of care (timings, staff grades, specialty review, wards), presenting complaint, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, nebulisers, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT).
Available supplementary data: More extensive data including wave 2 patients in non-OMOP form. Ambulance, 111, 999 data, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Facebook
TwitterEmergency hospital admissions in the UK have been rising steadily. Medical emergencies account for the largest proportion of unplanned admissions. Same Day Emergency Care (SDEC) is one of many ways the NHS are working to provide the right care, in the right place and at the right time. The national SDEC model builds on the previous work undertaken in ambulatory emergency care (AEC) services across the NHS , which was aimed at providing a consistent approach to patient pathways.
A proportion of medical admissions are suitable for SDEC, where they are assessed and treated, but do not require overnight admission to an inpatient bed. This is beneficial for patients, as hospital admission and its associated risks can be avoided. As inpatient admissions increase, it is also important to consider alternative methods of care to reduce pressure on inpatient services. SDEC is highlighted in the NHS Long Term Plan, recommending a third of patients in acute services should receive SDEC.
The number of medical patients receiving SDEC varies between centres. This may relate to local patient populations, but also local availability of services. SDEC is often delivered through Ambulatory Emergency Care, as well as the Acute Medical Unit, and multiple additional services can aid delivery, including hospital at home services, and early outpatient review in specialist clinics. These services vary between hospitals.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix.
EHR. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.
Scope: All patients admitted with unplanned medical admissions who receive Same Day Emergency Care from 2004 onwards. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to acute care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, imaging reports, all prescribed & administered treatments (fluids, blood products, procedures), all outcomes.
Available supplementary data: Matched controls; ambulance, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Facebook
TwitterWe performed longitudinal plasma proteomics analysis and determined absolute protein levels in a Canadian cohort (n=74) at admission day to hospital for acute COVID-19 and at 3 and 6 months after diagnosis of acute COVID-19. We measured plasma protein on a triple quadrupole mass spectrometer operated in multiple reaction monitoring mode and used internal standards to deduce protein absolute concentrations. We used a validated panel of 269 surrogate heavy labeled peptides. We also measured % predicted forced vital capacity (FVC, %) and diffusing capacity of the lungs for carbon monoxide (DLCO, %) by routine pulmonary function testing. We did functional enrichment and pathway analyses and determined proteins that were increased or decreased from hospital admission to 3-months and 6-months, compared females to males and determined associations of proteins with FVC% and DLCO%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An overview of the central tenets of Normalisation Process Theory.
Facebook
TwitterOn March 31, 2024, there were 50 critical care (CC) beds in England occupied with patients who had tested positive for COVID-19. The number of critical care beds occupied with COVID patients peaked in England on January 22, 2021 when 4,096 patients required critical care treatment. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.