15 datasets found
  1. COVID-19 Reported Patient Impact and Hospital Capacity by Facility

    • healthdata.gov
    • data.ct.gov
    • +2more
    Updated May 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). COVID-19 Reported Patient Impact and Hospital Capacity by Facility [Dataset]. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
    Explore at:
    tsv, application/rssxml, csv, xml, application/rdfxml, application/geo+json, kmz, kmlAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.

    The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

    The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.

    For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.

    Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.

    • A “_coverage” append denotes how many times the facility reported that element during that collection week.
    • A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week.
    • A “_avg” append is the average of the reports provided for that facility for that element during that collection week.

    The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.

    A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv

    This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.

    Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.

    For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.

    For recent updates to the dataset, scroll to the bottom of the dataset description.

    On May 3, 2021, the following fields have been added to this data set.

    • hhs_ids
    • previous_day_admission_adult_covid_confirmed_7_day_coverage
    • previous_day_admission_pediatric_covid_confirmed_7_day_coverage
    • previous_day_admission_adult_covid_suspected_7_day_coverage
    • previous_day_admission_pediatric_covid_suspected_7_day_coverage
    • previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum
    • total_personnel_covid_vaccinated_doses_none_7_day_sum
    • total_personnel_covid_vaccinated_doses_one_7_day_sum
    • total_personnel_covid_vaccinated_doses_all_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_one_7_day_sum
    • previous_week_patients_covid_vaccinated_doses_all_7_day_sum

    On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.

    On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.

    On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.

    On September 20, 2021, the following has been updated: The use of analytic dataset as a source.

    On January 19, 2022, the following fields have been added to this dataset:

    • inpatient_beds_used_covid_7_day_avg
    • inpatient_beds_used_covid_7_day_sum
    • inpatient_beds_used_covid_7_day_coverage

    On April 28, 2022, the following pediatric fields have been added to this dataset:

    • all_pediatric_inpatient_bed_occupied_7_day_avg
    • all_pediatric_inpatient_bed_occupied_7_day_coverage
    • all_pediatric_inpatient_bed_occupied_7_day_sum
    • all_pediatric_inpatient_beds_7_day_avg
    • all_pediatric_inpatient_beds_7_day_coverage
    • all_pediatric_inpatient_beds_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_0_4_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_12_17_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_5_11_7_day_sum
    • previous_day_admission_pediatric_covid_confirmed_unknown_7_day_sum
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_avg
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_coverage
    • staffed_icu_pediatric_patients_confirmed_covid_7_day_sum
    • staffed_pediatric_icu_bed_occupancy_7_day_avg
    • staffed_pediatric_icu_bed_occupancy_7_day_coverage
    • staffed_pediatric_icu_bed_occupancy_7_day_sum
    • total_staffed_pediatric_icu_beds_7_day_avg
    • total_staffed_pediatric_icu_beds_7_day_coverage
    • total_staffed_pediatric_icu_beds_7_day_sum

    On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb

    Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.

  2. f

    Summary of sources of hospital data, the years they represent, their scope...

    • plos.figshare.com
    xls
    Updated Jun 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul O. Ouma; Lucas Malla; Benjamin W. Wachira; Hellen Kiarie; Jeremiah Mumo; Robert W. Snow; Mike English; Emelda A. Okiro (2023). Summary of sources of hospital data, the years they represent, their scope and availability status. [Dataset]. http://doi.org/10.1371/journal.pgph.0000216.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 17, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Paul O. Ouma; Lucas Malla; Benjamin W. Wachira; Hellen Kiarie; Jeremiah Mumo; Robert W. Snow; Mike English; Emelda A. Okiro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of sources of hospital data, the years they represent, their scope and availability status.

  3. Number of available hospital beds per 1,000 people in the United States...

    • statista.com
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Number of available hospital beds per 1,000 people in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/1074/hospitals/
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The average number of hospital beds available per 1,000 people in the United States was forecast to continuously decrease between 2024 and 2029 by in total 0.1 beds (-3.7 percent). After the eighth consecutive decreasing year, the number of available beds per 1,000 people is estimated to reach 2.63 beds and therefore a new minimum in 2029. Depicted is the number of hospital beds per capita in the country or region at hand. As defined by World Bank this includes inpatient beds in general, specialized, public and private hospitals as well as rehabilitation centers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the average number of hospital beds available per 1,000 people in countries like Canada and Mexico.

  4. E

    Health Statistic and Research Database

    • www-acc.healthinformationportal.eu
    • healthinformationportal.eu
    html
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Estonian National Institute for Health Development (2023). Health Statistic and Research Database [Dataset]. https://www-acc.healthinformationportal.eu/services/find-data?page=6
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset authored and provided by
    Estonian National Institute for Health Development
    Variables measured
    sex, title, topics, country, language, data_owners, description, contact_name, geo_coverage, contact_email, and 10 more
    Measurement technique
    Multiple sources
    Description

    The Health Statistics and Health Research Database is Estonian largest set of health-related statistics and survey results administrated by National Institute for Health Development. Use of the database is free of charge.

    The database consists of eight main areas divided into sub-areas. The data tables included in the sub-areas are assigned unique codes. The data tables presented in the database can be both viewed in the Internet environment, and downloaded using different file formats (.px, .xlsx, .csv, .json). You can download the detailed database user manual here (.pdf).

    The database is constantly updated with new data. Dates of updating the existing data tables and adding new data are provided in the release calendar. The date of the last update to each table is provided after the title of the table in the list of data tables.

    A contact person for each sub-area is provided under the "Definitions and Methodology" link of each sub-area, so you can ask additional information about the data published in the database. Contact this person for any further questions and data requests.

    Read more about publication of health statistics by National Institute for Health Development in Health Statistics Dissemination Principles.

  5. National Child Development Study: Linked Health Administrative Datasets...

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCL Institute Of Education University College London (2024). National Child Development Study: Linked Health Administrative Datasets (Hospital Episode Statistics), England, 1997-2017: Secure Access [Dataset]. http://doi.org/10.5255/ukda-sn-8697-2
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    UCL Institute Of Education University College London
    Area covered
    England
    Description

    The National Child Development Study (NCDS) is a continuing longitudinal study that seeks to follow the lives of all those living in Great Britain who were born in one particular week in 1958. The aim of the study is to improve understanding of the factors affecting human development over the whole lifespan.

    The NCDS has its origins in the Perinatal Mortality Survey (PMS) (the original PMS study is held at the UK Data Archive under SN 2137). This study was sponsored by the National Birthday Trust Fund and designed to examine the social and obstetric factors associated with stillbirth and death in early infancy among the 17,000 children born in England, Scotland and Wales in that one week. Selected data from the PMS form NCDS sweep 0, held alongside NCDS sweeps 1-3, under SN 5565.

    Survey and Biomeasures Data (GN 33004):

    To date there have been nine attempts to trace all members of the birth cohort in order to monitor their physical, educational and social development. The first three sweeps were carried out by the National Children's Bureau, in 1965, when respondents were aged 7, in 1969, aged 11, and in 1974, aged 16 (these sweeps form NCDS1-3, held together with NCDS0 under SN 5565). The fourth sweep, also carried out by the National Children's Bureau, was conducted in 1981, when respondents were aged 23 (held under SN 5566). In 1985 the NCDS moved to the Social Statistics Research Unit (SSRU) - now known as the Centre for Longitudinal Studies (CLS). The fifth sweep was carried out in 1991, when respondents were aged 33 (held under SN 5567). For the sixth sweep, conducted in 1999-2000, when respondents were aged 42 (NCDS6, held under SN 5578), fieldwork was combined with the 1999-2000 wave of the 1970 Birth Cohort Study (BCS70), which was also conducted by CLS (and held under GN 33229). The seventh sweep was conducted in 2004-2005 when the respondents were aged 46 (held under SN 5579), the eighth sweep was conducted in 2008-2009 when respondents were aged 50 (held under SN 6137) and the ninth sweep was conducted in 2013 when respondents were aged 55 (held under SN 7669).

    Four separate datasets covering responses to NCDS over all sweeps are available. National Child Development Deaths Dataset: Special Licence Access (SN 7717) covers deaths; National Child Development Study Response and Outcomes Dataset (SN 5560) covers all other responses and outcomes; National Child Development Study: Partnership Histories (SN 6940) includes data on live-in relationships; and National Child Development Study: Activity Histories (SN 6942) covers work and non-work activities. Users are advised to order these studies alongside the other waves of NCDS.

    From 2002-2004, a Biomedical Survey was completed and is available under End User Licence (EUL) (SN 8731) and Special Licence (SL) (SN 5594). Proteomics analyses of blood samples are available under SL SN 9254.

    Linked Geographical Data (GN 33497):
    A number of geographical variables are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies.

    Linked Administrative Data (GN 33396):
    A number of linked administrative datasets are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies. These include a Deaths dataset (SN 7717) available under SL and the Linked Health Administrative Datasets (SN 8697) available under Secure Access.

    Additional Sub-Studies (GN 33562):
    In addition to the main NCDS sweeps, further studies have also been conducted on a range of subjects such as parent migration, unemployment, behavioural studies and respondent essays. The full list of NCDS studies available from the UK Data Service can be found on the NCDS series access data webpage.

    How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
    For information on how to access biomedical data from NCDS that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.

    Further information about the full NCDS series can be found on the Centre for Longitudinal Studies website.

    The National Child Development Study: Linked Health Administrative Datasets (Hospital Episode Statistics), England, 1997-2017: Secure Access includes data files from the NHS Digital HES database for those cohort members who provided consent to health data linkage in the Age 50 sweep. The HES database contains information about all hospital admissions in England. The following linked HES data are available:

    1) Accident and Emergency (A&E)
    The A&E dataset details each attendance to an Accident and Emergency care facility in England, between 01-04-2007 and 31-03-2017 (inclusive). It includes major A&E departments, single speciality A&E departments, minor injury units and walk-in centres in England.

    2) Admitted Patient Care (APC)
    The APC data summarises episodes of care for admitted patients, where the episode occurred between 01-04-1997 and 31-03-2017 (inclusive).

    3) Critical Care (CC)
    The CC dataset covers records of critical care activity between 01-04-2009 and 31-03-2017 (inclusive).

    4) Out Patient (OP)
    The OP dataset lists the outpatient appointments between 01-04-2003 and 31-03-2017 (inclusive).

    CLS/ NHS Digital Sub-licence agreement
    NHS Digital has given CLS permission for onward sharing of the Next Steps/HES dataset via the UKDS Secure Lab. In order to ensure data minimisation, NHS Digital requires that researchers only access the HES variables needed for their approved research project. Therefore, the HES linked data provided by the UKDS to approved researchers will be subject to sub-setting of variables. The researcher will need to request a specific sub-set of variables from the Next Steps HES data dictionary, which will subsequently make available within their UKDS Secure Account. Once the researcher has finished their research, the UKDS will delete the tailored dataset for that specific project. Any party wishing to access the data deposited at the UK Data Service will be required to enter into a Licence agreement with CLS (UCL), in addition to the agreements signed with the UKDS, provided in the application pack.

    Latest edition information
    For the second edition (September 2022), 7 previously unavailable variables have been added to the A&E, APC and OP data files. The User Guide has also been updated, along with the variable list, to reflect the changes.

  6. Medical Service Study Areas

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://data.chhs.ca.gov/dataset/medical-service-study-areas
    Explore at:
    zip, arcgis geoservices rest api, csv, kml, geojson, htmlAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  7. f

    Definition of specific chronic diseases based on main diagnosis during...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucy Bayer-Oglesby; Andrea Zumbrunn; Nicole Bachmann (2023). Definition of specific chronic diseases based on main diagnosis during hospitalisation. [Dataset]. http://doi.org/10.1371/journal.pone.0272265.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Lucy Bayer-Oglesby; Andrea Zumbrunn; Nicole Bachmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Definition of specific chronic diseases based on main diagnosis during hospitalisation.

  8. w

    Demographic and Health Survey 2022 - Ghana

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2024). Demographic and Health Survey 2022 - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/6122
    Explore at:
    Dataset updated
    Jan 19, 2024
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    2022 - 2023
    Area covered
    Ghana
    Description

    Abstract

    The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.

    The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5

    The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).

    The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Face-to-face computer-assisted interviews [capi]

    Research instrument

    Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.

    The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.

    Cleaning operations

    DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.

    From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.

    Response rate

    A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Age displacement at age 14/15
    • Age displacement at age 49/50
    • Pregnancy outcomes by years preceding the survey
    • Completeness of reporting
    • Standardisation exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Interference in height and weight measurements of children
    • Interference in height and weight measurements of women and men
    • Heaping in anthropometric measurements for children (digit preference)
    • Observation of mosquito nets
    • Observation of handwashing facility
    • School attendance by single year of age
    • Vaccination cards photographed
    • Number of
  9. National Child Development Study: Linked Administrative Data, Inpatient...

    • beta.ukdataservice.ac.uk
    Updated 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Child Development Study: Linked Administrative Data, Inpatient Attendance, Scottish Medical Records, 1981-2015: Secure Access [Dataset]. https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=8762
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    UCL Institute Of Education University College London
    Area covered
    Scotland
    Description

    The National Child Development Study (NCDS) is a continuing longitudinal study that seeks to follow the lives of all those living in Great Britain who were born in one particular week in 1958. The aim of the study is to improve understanding of the factors affecting human development over the whole lifespan.

    The NCDS has its origins in the Perinatal Mortality Survey (PMS) (the original PMS study is held at the UK Data Archive under SN 2137). This study was sponsored by the National Birthday Trust Fund and designed to examine the social and obstetric factors associated with stillbirth and death in early infancy among the 17,000 children born in England, Scotland and Wales in that one week. Selected data from the PMS form NCDS sweep 0, held alongside NCDS sweeps 1-3, under SN 5565.

    Survey and Biomeasures Data (GN 33004):

    To date there have been nine attempts to trace all members of the birth cohort in order to monitor their physical, educational and social development. The first three sweeps were carried out by the National Children's Bureau, in 1965, when respondents were aged 7, in 1969, aged 11, and in 1974, aged 16 (these sweeps form NCDS1-3, held together with NCDS0 under SN 5565). The fourth sweep, also carried out by the National Children's Bureau, was conducted in 1981, when respondents were aged 23 (held under SN 5566). In 1985 the NCDS moved to the Social Statistics Research Unit (SSRU) - now known as the Centre for Longitudinal Studies (CLS). The fifth sweep was carried out in 1991, when respondents were aged 33 (held under SN 5567). For the sixth sweep, conducted in 1999-2000, when respondents were aged 42 (NCDS6, held under SN 5578), fieldwork was combined with the 1999-2000 wave of the 1970 Birth Cohort Study (BCS70), which was also conducted by CLS (and held under GN 33229). The seventh sweep was conducted in 2004-2005 when the respondents were aged 46 (held under SN 5579), the eighth sweep was conducted in 2008-2009 when respondents were aged 50 (held under SN 6137) and the ninth sweep was conducted in 2013 when respondents were aged 55 (held under SN 7669).

    Four separate datasets covering responses to NCDS over all sweeps are available. National Child Development Deaths Dataset: Special Licence Access (SN 7717) covers deaths; National Child Development Study Response and Outcomes Dataset (SN 5560) covers all other responses and outcomes; National Child Development Study: Partnership Histories (SN 6940) includes data on live-in relationships; and National Child Development Study: Activity Histories (SN 6942) covers work and non-work activities. Users are advised to order these studies alongside the other waves of NCDS.

    From 2002-2004, a Biomedical Survey was completed and is available under End User Licence (EUL) (SN 8731) and Special Licence (SL) (SN 5594). Proteomics analyses of blood samples are available under SL SN 9254.

    Linked Geographical Data (GN 33497):
    A number of geographical variables are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies.

    Linked Administrative Data (GN 33396):
    A number of linked administrative datasets are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies. These include a Deaths dataset (SN 7717) available under SL and the Linked Health Administrative Datasets (SN 8697) available under Secure Access.

    Additional Sub-Studies (GN 33562):
    In addition to the main NCDS sweeps, further studies have also been conducted on a range of subjects such as parent migration, unemployment, behavioural studies and respondent essays. The full list of NCDS studies available from the UK Data Service can be found on the NCDS series access data webpage.

    How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
    For information on how to access biomedical data from NCDS that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.

    Further information about the full NCDS series can be found on the Centre for Longitudinal Studies website.

    The NCDS linked Scottish Medical Records (SMR) datasets include data files from the NHS Digital Hospital Episode Statistics (HES) database for those cohort members who provided consent to health data linkage in the Age 50 sweep, and had ever lived in Scotland.

    The SMR database contains information about all hospital admissions in Scotland. The following datasets are available:

    • SN 8761: National Child Development Study: Linked Administrative Data, Outpatient Attendance, Scottish Medical Records, 1996-2015: Secure Access (SMR00)
    • SN 8762: (this study) National Child Development Study: Linked Administrative Data, Inpatient Attendance, Scottish Medical Records, 1981-2015: Secure Access (SMR01)
    • SN 8763: National Child Development Study: Linked Administrative Data, Maternity Records, Scottish Medical Records, 1981-2002: Secure Access (SMR02)
    • SN 8764: National Child Development Study: Linked Administrative Data, Prescribing Information System, Scottish Medical Records, 2009-2015: Secure Access (PIS)

    Researchers who require access to more than one dataset need to apply for them individually.

    Further information about the SMR database can be found on the https://www.ndc.scot.nhs.uk/Data-Dictionary/SMR-Datasets/">Information Services Division Scotland SMR Datasetswebpage.

    CLS/SMR Digital Sub-licence agreement:

    The linked SMR data have been processed by CLS and supplied to the UK Data Service (UKDS) under Secure Access Licence. Applicants wishing to access these data need to establish the necessary agreement with the UKDS and abide by the terms and conditions of the UKDS Secure Access licence. An additional condition of the licensing is that it is not permitted to link SMR data to NCDS data that include Scottish geographies.

    Non-straightforward requests to include additional data not held by UKDS would be handled by the CLS Data Access Committee and referred to the Public Benefit and Privacy Panel (PBPP) if necessary.

  10. A

    Climate Ready Boston Social Vulnerability

    • data.boston.gov
    • gis.data.mass.gov
    • +1more
    Updated Sep 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Maps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://data.boston.gov/dataset/climate-ready-boston-social-vulnerability
    Explore at:
    arcgis geoservices rest api, html, csv, kml, geojson, zipAvailable download formats
    Dataset updated
    Sep 21, 2017
    Dataset provided by
    BostonMaps
    Authors
    Boston Maps
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Boston
    Description
    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses.

    Source:

    The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.

    Population Definitions:

    Older Adults:
    Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.
    Attribute label: OlderAdult

    Children:
    Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.
    Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.
    Attribute label: TotChild

    People of Color:
    People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups as
    well. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.
    Attribute label: POC2

    Limited English Proficiency:
    Without adequate English skills, residents can miss crucial information on how to prepare
    for hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more socially
    isolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.
    Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.
    Attribute label: LEP

    Low to no Income:
    A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.
    Attribute label: Low_to_No

    People with Disabilities:
    People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty.
    Attribute label: TotDis

    Medical Illness:
    Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.
    Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.
    Attribute label: MedIllnes

    Other attribute definitions:
    GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census Tract
    AREA_SQFT: Tract area (in square feet)
    AREA_ACRES: Tract area (in acres)
    POP100_RE: Tract population count
    HU100_RE: Tract housing unit count
    Name: Boston Neighborhood
  11. d

    AIHW - Potentially Preventable Hospitalisations (PPH) - Location of Client...

    • data.gov.au
    ogc:wfs, wms
    Updated Nov 4, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). AIHW - Potentially Preventable Hospitalisations (PPH) - Location of Client (SA3) 2013-2017 [Dataset]. https://data.gov.au/dataset/ds-aurin-ca09457a2ad015f6c1003df7505641182de5a8896a60fa52d083b996601a1a96
    Explore at:
    wms, ogc:wfsAvailable download formats
    Dataset updated
    Nov 4, 2018
    Description

    This dataset presents the footprint of statistics of potentially preventable hospitalisations (PPH). PPH does not mean that a patient admitted for that condition did not need to be hospitalised at …Show full descriptionThis dataset presents the footprint of statistics of potentially preventable hospitalisations (PPH). PPH does not mean that a patient admitted for that condition did not need to be hospitalised at the time of admission. Rather the hospitalisation could have potentially been prevented through the provision of appropriate preventative health interventions and early disease management in primary care and community-based care settings. PPH rates are indicators of the effectiveness of non-hospital care. The data spans the financial years of 2013-2017 and is aggregated to Statistical Area Level 3 (SA3) geographic areas from the 2016 Australian Statistical Geography Standard (ASGS). The data is sourced from the Australian Institute of Health and Welfare (AIHW) - National Hospital Morbidity Database (NHMD), which is a compilation of episode-level records from admitted patient morbidity data collection systems in Australian public and private hospitals. For further information about this dataset visit the data source: Australian Institute of Health and Welfare - Potentially Preventable Hospitalisations Data Tables. Please note: AURIN has spatially enabled the original data. In tables presenting measures by PPH condition, some hospitalisations may account for multiple PPH conditions. As a result, conditions may not sum to categories, and categories may not sum to Total PPH. The counting unit for this publication were episodes of stay, measured by financial year of separation. This may be a complete hospital stay (to discharge, transfer, or death), or a part of the stay if there was a change of care type (for example from acute to rehabilitation). As a record is included for each hospitalisation, not for each patient, patients hospitalised more than once or transferred between hospitals in the financial year will have more than one record. Episodes for unqualified newborn care, posthumous organ procurement or hospital boarders were excluded. Population counts are based on estimated resident populations at 30 June for each year. Australian estimated resident population data are sourced from Australian demographic statistics (ABS cat. no. 3101.0). The definition of SA3 reported varies by financial year. Results for 2016-17 are reported using the 2016 release of SA3 and results for earlier years are reported using the 2011 release of SA3. National totals include data where the place of usual residence was overseas, no fixed abode, offshore and migratory, and undefined but these data are excluded from PHN and SA3 area estimates. All data for an area were suppressed (marked NP) if the number of rounded PPH was less than 5. Values assigned NP in the original data have been set to null. Copyright attribution: Government of the Commonwealth of Australia - Australian Institute of Health and Welfare, (2019): ; accessed from AURIN on 12/16/2021. Licence type: Creative Commons Attribution 3.0 Australia (CC BY 3.0 AU)

  12. f

    Definition and descriptive statistics of variables.

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Arvelo-Martín; Juan José Díaz-Hernández; Ignacio Abásolo-Alessón (2023). Definition and descriptive statistics of variables. [Dataset]. http://doi.org/10.1371/journal.pone.0218367.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Alejandro Arvelo-Martín; Juan José Díaz-Hernández; Ignacio Abásolo-Alessón
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Definition and descriptive statistics of variables.

  13. Communal establishment management and type (residents) 2011

    • statistics.ukdataservice.ac.uk
    csv, zip
    Updated Sep 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2022). Communal establishment management and type (residents) 2011 [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/communal-establishment-management-and-type-residents-2011
    Explore at:
    csv(73795179), csv(14634635), csv(3370), zip(3719169), csv(29898), csv(41987), csv(3241715), csv(218008), csv(3108540)Available download formats
    Dataset updated
    Sep 20, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    UK Data Servicehttps://ukdataservice.ac.uk/
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    Dataset population: Residents in communal establishments

    Communal establishments

    A communal establishment is an establishment providing managed residential accommodation. 'Managed' in this context, means full-time or part-time supervision of the accommodation.

    Types of communal establishment include:

    • Sheltered accommodation units where fewer than 50 per cent of the units in the establishment have their own cooking facilities, or similar accommodation where residents have their own rooms, but a main meal is provided. If half or more possess their own facilities for cooking (regardless of use) all units in the whole establishment are treated as separate households.
    • Small hotels, guest houses, B&Bs, inns, and pubs with residential accommodation with room for 10 or more guests (excluding the owner/manager and his/her family).
    • All accommodation provided solely for students (during term-time). This includes university-owned cluster flats, houses, and apartments located within student villages. It also includes similar accommodation that is owned by a private company and provided solely for students (University-owned student houses that were difficult to identify and not clearly located with other student residences are treated as households, and houses rented to students by private landlords are also treated as households). Accommodation available only to students may include a small number of caretaking or maintenance staff, or academic staff.
    • Accommodation available only to nurses. This includes cluster flats and similar accommodation, provided solely for nurses. Nurses' accommodation on a hospital site that does not also contain patients is treated as a separate communal establishment from the hospital (and not categorised as a hospital), so that nurses are treated as 'residents' and not 'resident staff' or 'patients'. This ensures consistency with similar nurses' accommodation not on a hospital site.

    National Health Service (NHS) is used in England, Wales and Scotland. Health and Social Care Trust (HSCT) is used in Northern Ireland. In the 2001 Census, HSCT was referred to as NHS/HSSB.

    Usual resident population

    The main population base for statistics from the 2011 Census is the usual resident population as at census day, 27 March 2011. Although the population base for enumeration included non-UK-born short-term residents, this population is analysed separately and is not included in the main outputs from the 2011 Census.

    All statistics are produced using only usual residents of the UK unless otherwise specified.

    For 2011 Census purposes, a usual resident of the UK is anyone who, on census day, was in the UK and had stayed or intended to stay in the UK for a period of 12 months or more, or had a permanent UK address and was outside the UK and intended to be outside the UK for less than 12 months.

    For information about the main population base for statistics, how other population sub-groups are counted, and all variable definitions, see information about ONS variables and classifications.

  14. d

    Provisional Accident and Emergency Quality Indicators - England,...

    • digital.nhs.uk
    pdf, xls
    Updated Apr 27, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Provisional Accident and Emergency Quality Indicators - England, Experimental statistics by provider for December 2011 [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/provisional-accident-and-emergency-quality-indicators-for-england
    Explore at:
    pdf(51.1 kB), xls(2.0 MB), pdf(145.0 kB)Available download formats
    Dataset updated
    Apr 27, 2012
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Dec 1, 2011 - Dec 31, 2011
    Area covered
    England
    Description

    In April 2011 a new set of clinical quality indicators was introduced to replace the previous four hour waiting time standard, and measure the quality of care delivered in A&E departments in England. Further details on the background and management of the quality indicators are available from the Department of Health (DH) website. This is the ninth publication of data on the Accident and Emergency (A&E) clinical quality indicators, drawn from A&E data within provisional Hospital Episode Statistics (HES). These data relate to A&E attendances in December 2011 and draw on 1.36 million detailed records of attendances at major A&E departments, single speciality A&E departments (e.g. dental A&Es), minor injury units and walk-in centres in England. This report sets out data coverage, data quality and performance information for the following five A&E indicators: Left department before being seen for treatment rate Re-attendance rate Time to initial assessment Time to treatment Total time in A&E Publishing these data will help share information on the quality of care of A&E services to stimulate the discussion and debate between patients, clinicians, providers and commissioners, which is needed in a culture of continuous improvement. These A&E HES data are published as experimental statistics to note the shortfalls in the quality and coverage of records submitted via the A&E commissioning data set. The data used in these reports are sourced from Provisional A&E HES data, and as such these data may differ to information extracted directly from Secondary Uses Service (SUS) data, or data extracted directly from local patient administration systems. Provisional HES data may be revised throughout the year (for example, activity data for April 2011 may differ depending on whether they are extracted in August 2011, or later in the year). Indicator data published for earlier months have not been revised using updated HES data extracted in subsequent months. The data presented here represent the output of the existing A&E Commissioning Dataset (CDS V6 Type 010). It must be recognised that these data will not exactly match the data definitions for the A&E clinical quality indicators set out in the guidance document A&E clinical quality indicators: Implementation guidance and data definitions (external link). The DH is currently working with Information Standards Board to amend the existing CDS Type 10 Accident and Emergency to collect the data required to monitor the A&E indicators. A&E HES data are collected and published by the NHS Information Centre for Health and Social Care. The data in this report are secondary analyses of HES data produced by the Urgent & Emergency Care team, Department of Health. A&E HES data are published as experimental statistics to note the known shortfalls in the quality of some A&E HES data elements. The published information sets out where data quality for the indicators may be improved by, for example, reducing the number of unknown values (e.g. unknown times to initial assessment) and default values (e.g. the number of attendances that are automatically given a time to initial assessment of midnight 00:00). The quality and coverage of A&E HES data have considerably improved over the years, and the Department and the NHS Information Centre are working with NHS Performance and Information directors to further improve the data. Note: This information is secondary analysis of HES data that have been produced by the Urgent & Emergency Care team in the Department of Health. Questions should be forward to the mailbox of the Urgent & Emergency Care team at the Department of Health urgent&emergencycare@dh.gsi.gov.uk . Revisions Policy: Please note, Provisional HES data may be revised throughout the year (for example data will differ depending on the time at which they were extracted). Indicator data published for earlier months will not be revised using updated HES data extracted in subsequent months.

  15. d

    3.7.ii Tooth extractions due to decay for children admitted as inpatients to...

    • digital.nhs.uk
    csv, pdf, xlsx
    Updated Mar 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). 3.7.ii Tooth extractions due to decay for children admitted as inpatients to hospital, aged 10 years and under [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/nhs-outcomes-framework/march-2022
    Explore at:
    pdf(275.0 kB), xlsx(473.7 kB), pdf(660.5 kB), csv(547.8 kB)Available download formats
    Dataset updated
    Mar 17, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Apr 1, 2011 - Mar 31, 2021
    Area covered
    England
    Description

    Update 2 March 2023: Following the merger of NHS Digital and NHS England on 1st February 2023 we are reviewing the future presentation of the NHS Outcomes Framework indicators. As part of this review, the annual publication which was due to be released in March 2023 has been delayed. Further announcements about this dataset will be made on this page in due course. The crude rate of the number of finished consultant episodes (FCEs) where a tooth extraction was performed on a child aged 10 years or under at the start of the episode of care, due to tooth decay, per 100,000 resident population. This indicator measures tooth extractions in young patients, it is believed that the majority of cases could be avoided with better dental care and dentist intervention. The coronavirus (COVID-19) pandemic began to have an impact on Hospital Episode Statistics (HES) data late in the 2019/20 financial year, which continued into the 2020/21 financial year. This means we are seeing different patterns in the submitted data, for example, fewer patients being admitted to hospital, and therefore statistics which contain data from this period should be interpreted with care. Legacy unique identifier: P01770

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Health & Human Services (2024). COVID-19 Reported Patient Impact and Hospital Capacity by Facility [Dataset]. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u
Organization logo

COVID-19 Reported Patient Impact and Hospital Capacity by Facility

Explore at:
44 scholarly articles cite this dataset (View in Google Scholar)
tsv, application/rssxml, csv, xml, application/rdfxml, application/geo+json, kmz, kmlAvailable download formats
Dataset updated
May 3, 2024
Dataset provided by
United States Department of Health and Human Serviceshttp://www.hhs.gov/
Authors
U.S. Department of Health & Human Services
License

https://www.usa.gov/government-workshttps://www.usa.gov/government-works

Description

After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.

The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.

For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.

Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.

  • A “_coverage” append denotes how many times the facility reported that element during that collection week.
  • A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week.
  • A “_avg” append is the average of the reports provided for that facility for that element during that collection week.

The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.

A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv

This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.

Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.

For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.

For recent updates to the dataset, scroll to the bottom of the dataset description.

On May 3, 2021, the following fields have been added to this data set.

  • hhs_ids
  • previous_day_admission_adult_covid_confirmed_7_day_coverage
  • previous_day_admission_pediatric_covid_confirmed_7_day_coverage
  • previous_day_admission_adult_covid_suspected_7_day_coverage
  • previous_day_admission_pediatric_covid_suspected_7_day_coverage
  • previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum
  • total_personnel_covid_vaccinated_doses_none_7_day_sum
  • total_personnel_covid_vaccinated_doses_one_7_day_sum
  • total_personnel_covid_vaccinated_doses_all_7_day_sum
  • previous_week_patients_covid_vaccinated_doses_one_7_day_sum
  • previous_week_patients_covid_vaccinated_doses_all_7_day_sum

On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.

On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.

On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.

On September 20, 2021, the following has been updated: The use of analytic dataset as a source.

On January 19, 2022, the following fields have been added to this dataset:

  • inpatient_beds_used_covid_7_day_avg
  • inpatient_beds_used_covid_7_day_sum
  • inpatient_beds_used_covid_7_day_coverage

On April 28, 2022, the following pediatric fields have been added to this dataset:

  • all_pediatric_inpatient_bed_occupied_7_day_avg
  • all_pediatric_inpatient_bed_occupied_7_day_coverage
  • all_pediatric_inpatient_bed_occupied_7_day_sum
  • all_pediatric_inpatient_beds_7_day_avg
  • all_pediatric_inpatient_beds_7_day_coverage
  • all_pediatric_inpatient_beds_7_day_sum
  • previous_day_admission_pediatric_covid_confirmed_0_4_7_day_sum
  • previous_day_admission_pediatric_covid_confirmed_12_17_7_day_sum
  • previous_day_admission_pediatric_covid_confirmed_5_11_7_day_sum
  • previous_day_admission_pediatric_covid_confirmed_unknown_7_day_sum
  • staffed_icu_pediatric_patients_confirmed_covid_7_day_avg
  • staffed_icu_pediatric_patients_confirmed_covid_7_day_coverage
  • staffed_icu_pediatric_patients_confirmed_covid_7_day_sum
  • staffed_pediatric_icu_bed_occupancy_7_day_avg
  • staffed_pediatric_icu_bed_occupancy_7_day_coverage
  • staffed_pediatric_icu_bed_occupancy_7_day_sum
  • total_staffed_pediatric_icu_beds_7_day_avg
  • total_staffed_pediatric_icu_beds_7_day_coverage
  • total_staffed_pediatric_icu_beds_7_day_sum

On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb

Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.

Search
Clear search
Close search
Google apps
Main menu