Facebook
TwitterNumber and percentage of deaths, by place of death (in hospital or non-hospital), 1991 to most recent year.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This indicator is designed to accompany the SHMI publication. The SHMI includes all deaths reported of patients who were admitted to non-specialist acute trusts in England and either died while in hospital or within 30 days of discharge. Deaths related to COVID-19 are excluded from the SHMI. A contextual indicator on the percentage of deaths reported in the SHMI which occurred in hospital and the percentage which occurred outside of hospital is produced to support the interpretation of the SHMI. Notes: 1. As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. Activity that is being coded as COVID-19, and therefore excluded, is monitored in the contextual indicator 'Percentage of provider spells with COVID-19 coding' which is part of this publication. 2. Please note that there was a fall in the overall number of spells from March 2020 due to COVID-19 impacting on activity for England and the number has not returned to pre-pandemic levels. Further information at Trust level is available in the contextual indicator ‘Provider spells compared to the pre-pandemic period’ which is part of this publication. 3. There is a shortfall in the number of records for East Lancashire Hospitals NHS Trust (trust code RXR) and The Princess Alexandra Hospital NHS Trust (trust code RQW). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 4. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 5. Due to a problem with the process which links Hospital Episode Statistics (HES) data to the Office for National Statistics (ONS) death registrations data, some in-hospital deaths have been counted as survivals in a small number of trusts. This affects 80 spells in the current time period for Mid and South Essex NHS Foundation Trust (trust code RAJ) meaning that the number of observed deaths has been underestimated and so the results for this trust should be interpreted with caution. For the other trusts, the number of affected spells is 5 or fewer and so the impact will be small. 6. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 7. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
These mortality indicators provide information to help the National Health Service (NHS) monitor success in preventing potentially avoidable deaths following hospital treatment. The National Confidential Enquiry into Patients Outcomes and Death (NCEPOD) have, over many years, consistently shown that some deaths are associated with shortcomings in health care. The NHS may be helped to prevent such potentially avoidable deaths by seeing comparative figures and learning lessons from the confidential enquiries, and from the experience of hospitals with low death rates. The indicators presented measure mortality rates for patients, admitted for certain conditions or procedures, where the death occurred either in hospital or within 30 days of the emergency admission or operative procedure. Data are presented for the 10 year period 2005/06 to 2014/15, and in separate breakdowns for females, males and persons For information on the definitions of what these indicators include, please see the relevant specification.
Facebook
TwitterProvisional count of deaths involving coronavirus disease 2019 (COVID-19) in the United States by week of death and by hospital referral region (HRR). HRR is determined by county of occurrence. Weekly weighted counts of deaths from all causes and due to COVID-19 are provided by HRR overall and for decedents 65 years and older. The weighted counts by HRRs are based on published methods for aggregating county-level data to HRRs. More detail about aggregating to HRRs from counties can be found in the following: https://github.com/Dartmouth-DAC/covid-19-hrr-mapping https://dartmouthatlas.org/covid-19/hrr-mapping/
Facebook
TwitterNote: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
England
Facebook
TwitterThis data was collected and created for a project in a data science course I took in college in the Spring of 2020. I have updated the data to include more dates into the summer and decided to share it and the code so others can explore it.
Available here: https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals
Information on hospitals in the United States.
Available here: https://github.com/nytimes/covid-19-data
Daily covid cases and death data for us counties.
Available here: https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/totals/
Data sheet available here: https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2010-2019/co-est2019-alldata.pdf
2019 county level census estimates.
Available here: https://covidtracking.com/api/v1/states/daily.csv
Daily state level covid testing data.
Uploaded with Git LFS
Intereim data views created by me to hold cleaned data and used to create the final datset.
Final combined dataset, a days X 3142(num of us counties+dc) long time series with variables stored as a proportion of population.
Uploaded with Git LFS
The python scripts have comments to explain which datasets they're responsible for generating.
Feel free to use and edit them to tailor the datasets generated to your liking.
There is also a helper function library in the main directory.
Scripts can be ran by calling >python
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only.
This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data.
All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns.
Only Chicago residents are included based on the home address as provided by the medical provider.
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.
Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa).
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH.
Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors.
Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
Facebook
TwitterComplications and deaths - provider data. This data set includes provider-level data for the hip/knee complication measure, the CMS Patient Safety Indicators, and 30-day death rates. NOTICE: Data from the 1st and 2nd quarters of 2020 are not being reported due to the impact of the COVID-19 pandemic. For more information, please reference https://qualitynet.cms.gov/files/5fb838aef61c410025a64709?filename=2020-111-IP.pdf.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
England
Facebook
TwitterNote: Starting April 27, 2023 updates change from daily to weekly.
Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents, by date of death.
Description The MD COVID-19 - Total Confirmed Deaths by Date of Death data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by date of death. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Probable deaths are available from the MD COVID-19 - Total Probable Deaths by Date of Death data layer.
Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
TwitterDue to changes in the collection and availability of data on COVID-19 this page will no longer be updated. The webpage will no longer be available as of 11 May 2023. On-going, reliable sources of data for COVID-19 are available via the COVID-19 dashboard, Office for National Statistics, and the UKHSA
This page provides a weekly summary of data on deaths related to COVID-19 published by NHS England and the Office for National Statistics. More frequent reporting on COVID-19 deaths is now available here, alongside data on cases, hospitalisations, and vaccinations. This update contains data on deaths related to COVID-19 from:
NHS England COVID-19 Daily Deaths - last updated on 28 June 2022 with data up to and including 27 June 2022.
ONS weekly deaths by Local Authority - last updated on 16 August 2022 with data up to and including 05 August 2022.
Summary notes about each these sources are provided at the end of this document.
Note on interpreting deaths data: statistics from the available sources differ in definition, timing and completeness. It is important to understand these differences when interpreting the data or comparing between sources.
Weekly Key Points
An additional 24 deaths in London hospitals of patients who had tested positive for COVID-19 and an additional 5 where COVID-19 was mentioned on the death certificate were announced in the week ending 27 June 2022. This compares with 40 and 3 for the previous week. A total of 306 deaths in hospitals of patients who had tested positive for COVID-19 and 27 where COVID-19 was mentioned on the death certificate were announced for England as whole. This compares with 301 and 26 for the previous week. The total number of COVID-19 deaths reported in London hospitals of patients who had tested positive for COVID-19 is now 19,102. The total number of deaths in London hospitals where COVID-19 was mentioned on the death certificate is now 1,590. This compares to figures of 119,237 and 8,197 for English hospitals as a whole. Due to the delay between death occurrence and reporting, the estimated number of deaths to this point will be revised upwards over coming days These figures do not include deaths that occurred outside of hospitals. Data from ONS has indicated that the majority (79%) of COVID-19 deaths in London have taken place in hospitals.
Recently announced deaths in Hospitals
21 June 22 June 23 June 24 June 25 June 26 June 27 June London No positive test 0 0 1 4 0 0 0 London Positive test 3 7 2 10 0 0 2 Rest of England No positive test 2 6 4 4 0 0 6 Rest of England Positive test 47 49 41 58 6 0 81
16 May 23 May 30 May 06 June 13 June 20 June 27 June London No positive test 14 3 4 0 4 3 5 London Positive test 45 34 55 20 62 40 24 Rest of England No positive test 41 58 33 23 47 23 22 Rest of England Positive test 456 375 266 218 254 261 282 Deaths by date of occurrence
21 June 22 June 23 June 24 June 25 June 26 June 27 June London 20,683 20,686 20,690 20,691 20,692 20,692 20,692 Rest of England 106,604 106,635 106,679 106,697 106,713 106,733 106,742 Interpreting the data The data published by NHS England are incomplete due to:
delays in the occurrence and subsequent reporting of deaths deaths occurring outside of hospitals not being included
The total deaths reported up to a given point are therefore less than the actual number that have occurred by the same point. Delays in reporting NHS provide the following guidance regarding the delay between occurrence and reporting of deaths: Confirmation of COVID-19 diagnosis, death notification and reporting in central figures can take up to several days and the hospitals providing the data are under significant operational pressure. This means that the totals reported at 5pm on each day may not include all deaths that occurred on that day or on recent prior days. The data published by NHS England for reporting periods from April 1st onward includes both date of occurrence and date of reporting and so it is possible to illustrate the distribution of these reporting delays. This data shows that approximately 10% of COVID-19 deaths occurring in London hospitals are included in the reporting period ending on the same day, and that approximately two-thirds of deaths were reported by two days after the date of occurrence.
Deaths outside of hospitals The data published by NHS England does not include deaths that occur outside of hospitals, i.e. those in homes, hospices, and care homes. ONS have published data for deaths by place of occurrence. This shows that, up to 05 August, 79% of deaths in London recorded as involving COVID-19 occurred in hospitals (this compares with 44% for all causes of death). This would suggest that the NHS England data may underestimate overall deaths from COVID-19 by around 20%.
Comparison of data sources
Note on data sources
NHS England provides numbers of patients who have died in hos
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
England
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NHS UK - COVID-19 Daily Deaths
This section contains information on deaths of patients who have died in hospitals in England and had tested positive for COVID-19 at time of death. All deaths are recorded against the date of death rather than the date the deaths were announced. Interpretation of the figures should take into account the fact that totals by date of death, particularly for most recent days, are likely to be updated in future releases. For example as deaths are confirmed as testing positive for COVID-19, as more post-mortem tests are processed and data from them are validated. Any changes are made clear in the daily files.
These figures do not include deaths outside hospital, such as those in care homes. This approach makes it possible to compile deaths data on a daily basis using up to date figures.
Dataset Content
These figures will be updated at 2pm each day and include confirmed cases reported at 5pm the previous day. Confirmation of COVID-19 diagnosis, death notification and reporting in central figures can take up to several days and the hospitals providing the data are under significant operational pressure. This means that the totals reported at 5pm on each day may not include all deaths that occurred on that day or on recent prior days.
The original dataset is sourced directly from the NHS source site, this original dataset is then cleaned and converted to a csv format available for inclusion into a Kaggle notebook.
There are 3 files considered within the data :- 1. Fatalities_by_age_uk 2.Fatalities_by_region_uk 3.Fatalities_by_trust_uk
Data runs from March 1st up to the current day. Any discrepancies will be outlined. The first is cumulative for any previous days leading up to of relevance. The following days are not cumulative and represent the updated value for the date under consideration.
A start kernel is provided to demonstrate using the dataset.
Citations
This dataset is sourced from the NHS statistical work areas:- https://www.england.nhs.uk/statistics/statistical-work-areas/
This dataset has been sourced and provided to aid in the following competition:- https://www.kaggle.com/c/covid19-global-forecasting-week-4
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterThis dataset includes provider data for the hospital return days (or excess days in acute care) measures and the 30-day readmission measures, the unplanned readmissions measures, and the rate of unplanned hospital visits after an outpatient colonoscopy.
Facebook
TwitterComplications and deaths - state data. This data set includes state-level data for the hip/knee complication measure, the CMS Patient Safety Indicators, and 30-day death rates.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains the number of cases, number of in hospital/30 day deaths, observed, expected and risk- adjusted mortality rates for cardiac surgery and percutaneous coronary interventions (PCI) by hospital. Regions represent where the hospitals are located. The initial Health Data NY dataset includes patients discharged between January 1, 2008, and December 31, 2010. Analyses of risk-adjusted mortality rates and associated risk factors are provided for 2010 and for the three-year period from 2008 through 2010. For PCI, analyses of all cases, non-emergency cases (which represent the majority of procedures) and emergency cases are included. Subsequent year reports data will be appended to this dataset. For more information check out: http://www.health.ny.gov/health_care/consumer_information/cardiac_surgery/ or go to the “About” tab.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, hospitalizations, testing, and vaccinations as well as other variables of potential interest.
The variables represent all data related to confirmed cases, deaths, hospitalizations, and testing, as well as other variables of potential interest.
the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, reproduction_rate, icu_patients, icu_patients_per_million, hosp_patients, hosp_patients_per_million, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions, weekly_hosp_admissions_per_million, total_tests, new_tests, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed, new_tests_smoothed_per_thousand, positive_rate, tests_per_case, tests_units, total_vaccinations, people_vaccinated, people_fully_vaccinated, new_vaccinations, new_vaccinations_smoothed, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, new_vaccinations_smoothed_per_million, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index
https://systems.jhu.edu/research/public-health/ncov/ https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19 https://coronavirus.data.gov.uk/details/healthcare https://covid19tracker.ca/ https://healthdata.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-state-timeseries https://ourworldindata.org/coronavirus-testing#our-checklist-for-covid-19-testing-data
Facebook
TwitterNumber and percentage of deaths, by place of death (in hospital or non-hospital), 1991 to most recent year.