NOTE: This dataset has been retired and marked as historical-only.
Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.
Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.
Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).
Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.
Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.
CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.
Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.
Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.
Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.
Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.
Data Source: Illinois' National Electronic Disease Surveillance System (I-NEDSS), Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau American Community Survey
Since the start of the vaccination program in Canada in December 2020, around 55,668 unvaccinated Canadians have been hospitalized with a COVID-19 infection, compared to 23,297 fully vaccinated Canadians. This statistic illustrates the number of confirmed COVID-19 cases hospitalized in Canada from December 14, 2020 to September 25, 2022, by vaccination status.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency.
The California Department of Public Health (CDPH) is identifying vaccination status of COVID-19 cases, hospitalizations, and deaths by analyzing the state immunization registry and registry of confirmed COVID-19 cases. Post-vaccination cases are individuals who have a positive SARS-Cov-2 molecular test (e.g. PCR) at least 14 days after they have completed their primary vaccination series.
Tracking cases of COVID-19 that occur after vaccination is important for monitoring the impact of immunization campaigns. While COVID-19 vaccines are safe and effective, some cases are still expected in persons who have been vaccinated, as no vaccine is 100% effective. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Post-Vaccine-COVID19-Cases.aspx
Post-vaccination infection data is updated monthly and includes data on cases, hospitalizations, and deaths among the unvaccinated and the vaccinated. Partially vaccinated individuals are excluded. To account for reporting and processing delays, there is at least a one-month lag in provided data (for example data published on 9/9/22 will include data through 7/31/22).
Notes:
On September 9, 2022, the post-vaccination data has been changed to compare unvaccinated with those with at least a primary series completed for persons age 5+. These data will be updated monthly (first Thursday of the month) and include at least a one month lag.
On February 2, 2022, the post-vaccination data has been changed to distinguish between vaccination with a primary series only versus vaccinated and boosted. The previous dataset has been uploaded as an archived table. Additionally, the lag on this data has been extended to 14 days.
On November 29, 2021, the denominator for calculating vaccine coverage has been changed from age 16+ to age 12+ to reflect new vaccine eligibility criteria. The previous dataset based on age 16+ denominators has been uploaded as an archived table.
Information on the vaccination status of COVID-19 deaths and hospitalisations
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
**Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool ** As of January 26, 2023, the population counts are based on Statistics Canada’s 2021 estimates. The coverage methodology has been revised to calculate age based on the current date and deceased individuals are no longer included. The method used to count daily dose administrations has changed is now based on the date delivered versus the day entered into the data system. Historical data has been updated. Please note that Cases by Vaccination Status data will no longer be published as of June 30, 2022. Please note that case rates by vaccination status and age group data will no longer be published as of July 13, 2022. Please note that Hospitalization by Vaccination Status data will no longer be published as of June 30, 2022. Learn more about COVID-19 vaccines. ##Data includes: * daily and total doses administered * individuals with at least one dose * individuals fully vaccinated * total doses given to fully vaccinated individuals * vaccinations by age * percentage of age group * individuals with at least one dose, by PHU, by age group * individuals fully vaccinated, by PHU, by age group * COVID-19 cases by status: not fully vaccinated, fully vaccinated, vaccinated with booster * individuals in hospital due to COVID-19 (excluding ICU) by status: unvaccinated, partially vaccinated, fully vaccinated * individuals in ICU due to COVID-19 by status: unvaccinated, partially vaccinated, fully vaccinated, unknown * rate of COVID-19 cases per 100,000 by status and age group * rate per 100,000 (7-day average) by status and age group All data reflects totals from 8 p.m. the previous day. This dataset is subject to change. Additional notes * Data entry of vaccination records is still in progress, therefore the dosage data may not be a full representation of all vaccination doses administered in Ontario. * The data does not include dosage data where consent was not provided for vaccination records to be entered into the provincial CoVax system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information into CoVax. ##Hospitalizations and cases by vaccination status Hospitalizations * This is a new data collection and the data quality will continue to improve as hospitals continue to submit data. * In order to understand the vaccination status of patients currently hospitalized, a new data collection process was developed and this may cause discrepancies between other hospitalization numbers being collected using a different data collection process. * Data on patients in ICU are being collected from two different data sources with different extraction times and public reporting cycles. The existing data source (Critical Care Information System, CCIS) does not have vaccination status. * Historical data for hospitalizations by region may change over time as hospitals update previously entered data. * Due to incomplete weekend and holiday reporting, vaccination status data for hospital and ICU admissions is not updated on Sundays, Mondays and the day after holidays * Unvaccinated is defined as not having any dose, or between 0-13 days after administration of the first dose of a COVID-19 vaccine. * Partially vaccinated is defined as 14 days or more after the first dose of a 2-dose series COVID-19 vaccine, or between 0-13 days after administration of the second dose * Fully vaccinated is defined as 14 days or more after receipt of the second dose of a 2-dose series COVID-19 vaccine Cases * The cases by vaccination status may not match the daily COVID-19 case count because records with a missing or invalid health card number cannot be linked.
This dataset tracks the updates made on the dataset "Rates of Laboratory-Confirmed COVID-19 Hospitalizations by Vaccination Status from the COVID-NET Surveillance System" as a repository for previous versions of the data and metadata.
As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 26, 2023, the population counts are based on Statistics Canada’s 2021 estimates. The coverage methodology has been revised to calculate age based on the current date and deceased individuals are no longer included. The method used to count daily dose administrations has changed is now based on the date delivered versus the day entered into the data system. Historical data has been updated. Please note that Cases by Vaccination Status data will no longer be published as of June 30, 2022. Please note that case rates by vaccination status and age group data will no longer be published as of July 13, 2022. Please note that Hospitalization by Vaccination Status data will no longer be published as of June 30, 2022. Learn more about COVID-19 vaccines. ##Data includes: * daily and total doses administered * individuals with at least one dose * individuals fully vaccinated * total doses given to fully vaccinated individuals * vaccinations by age * percentage of age group * individuals with at least one dose, by PHU, by age group * individuals fully vaccinated, by PHU, by age group * COVID-19 cases by status: not fully vaccinated, fully vaccinated, vaccinated with booster * individuals in hospital due to COVID-19 (excluding ICU) by status: unvaccinated, partially vaccinated, fully vaccinated * individuals in ICU due to COVID-19 by status: unvaccinated, partially vaccinated, fully vaccinated, unknown * rate of COVID-19 cases per 100,000 by status and age group * rate per 100,000 (7-day average) by status and age group All data reflects totals from 8 p.m. the previous day. This dataset is subject to change. Additional notes * Data entry of vaccination records is still in progress, therefore the dosage data may not be a full representation of all vaccination doses administered in Ontario. * The data does not include dosage data where consent was not provided for vaccination records to be entered into the provincial CoVax system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information into CoVax. ##Hospitalizations and cases by vaccination status Hospitalizations * This is a new data collection and the data quality will continue to improve as hospitals continue to submit data. * In order to understand the vaccination status of patients currently hospitalized, a new data collection process was developed and this may cause discrepancies between other hospitalization numbers being collected using a different data collection process. * Data on patients in ICU are being collected from two different data sources with different extraction times and public reporting cycles. The existing data source (Critical Care Information System, CCIS) does not have vaccination status. * Historical data for hospitalizations by region may change over time as hospitals update previously entered data. * Due to incomplete weekend and holiday reporting, vaccination status data for hospital and ICU admissions is not updated on Sundays, Mondays and the day after holidays * Unvaccinated is defined as not having any dose, or between 0-13 days after administration of the first dose of a COVID-19 vaccine. * Partially vaccinated is defined as 14 days or more after the first dose of a 2-dose series COVID-19 vaccine, or between 0-13 days after administration of the second dose * Fully vaccinated is defined as 14 days or more after receipt of the second dose of a 2-dose series COVID-19 vaccine Cases * The cases by vaccination status may not match the daily COVID-19 case count because records with a missing or invalid health card number cannot be linked.
Important note - July 6, 2022: Update stopped. Considering the changes in the vaccination recommendations issued on June 20, 2022 by the Committee on Immunization of Quebec, an adaptation of the indicators to assess and monitor vaccination coverage during the fall 2022 campaign is in progress. Since the monitoring of the indicators as they were disseminated up to now is no longer possible, the dataset will no longer be updated for the time being. The files from the last update remain available. This game presented the daily portrait of the vaccination status of new cases and new hospitalizations of COVID-19 in Quebec. The most up-to-date data presented is from the day before.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
COVID-NET is a population-based surveillance system that collects data on laboratory-confirmed COVID-19-associated hospitalizations among children and adults through a network of over 250 acute-care hospitals in 14 states. Additional data on vaccination status for individual cases are collected and available from COVID-NET catchment areas in 13 of the 14 states.
COVID-NET hospitalizations data are preliminary and subject to change as more data become available. Data will be updated weekly.
For more information about COVID-NET, please see https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net/purpose-methods.html.
BackgroundDespite decreasing COVID-19 disease severity during the Omicron waves, a proportion of patients still require hospitalization and intensive care.ObjectiveTo compare demographic characteristics, comorbidities, vaccination status, and previous infections in patients hospitalized for community-associated COVID-19 (CAC) in predominantly Delta, Omicron BA.1 and BA.4/5 SARS-CoV-2 waves.MethodsData were extracted from three national databases—the National COVID-19 Database, National Vaccination Registry and National Registry of Hospitalizations.ResultsAmong the hospitalized CAC patients analyzed in this study, 5,512 were infected with Delta, 1,120 with Omicron BA.1, and 1,143 with the Omicron BA.4/5 variant. The age and sex structure changed from Delta to BA.4/5, with the proportion of women (9.5% increase), children and adolescents (10.4% increase), and octa- and nonagenarians increasing significantly (24.5% increase). Significantly more patients had comorbidities (measured by the Charlson Comorbidity Index), 30.3% in Delta and 43% in BA.4/5 period. The need for non-invasive ventilatory support (NiVS), ICU admission, mechanical ventilation (MV), and in-hospital mortality (IHM) decreased from Delta to Omicron BA.4/5 period for 12.6, 13.5, 11.5, and 6.3%, respectively. Multivariate analysis revealed significantly lower odds for ICU admission (OR 0.68, CI 0.54–0.84, p < 0.001) and IHM (OR 0.74, CI 0.58–0.93, p = 0.011) during the Delta period in patients who had been fully vaccinated or boosted with a COVID-19 vaccine within the previous 6 months. In the BA.1 variant period, patients who had less than 6 months elapsed between the last vaccine dose and SARS-CoV-2 positivity had lower odds for MV (OR 0.38, CI 0.18-0.72, p = 0.005) and IHM (OR 0.56, CI 0.37- 0.83, p = 0.005), but not for NIVS or ICU admission.ConclusionThe likelihood of developing severe CAC in hospitalized patients was higher in those with the Delta and Omicron BA.1 variant compared to BA.4/5.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
This dataset includes the number of COVID-19 infections, hospitalizations, and deaths for each health region in Virginia by the week of onset/specimen collection and by vaccination status.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Uncertainty remains regarding the magnitude of effectiveness of influenza vaccines for preventing serious outcomes, especially among young children. We estimated vaccine effectiveness (VE) against laboratory-confirmed influenza hospitalizations among children aged 6–59 months. We used the test-negative design in hospitalized children in Ontario, Canada during the 2010–11 to 2013–14 influenza seasons. We used logistic regression models adjusted for age, season, and time within season to calculate VE estimates by vaccination status (full vs. partial), age group, and influenza season. We also assessed VE incorporating prior history of influenza vaccination. We included specimens from 9,982 patient hospitalization episodes over four seasons, with 12.8% testing positive for influenza. We observed variation in VE by vaccination status, age group, and influenza season. For the four seasons combined, VE was 60% (95%CI, 44%-72%) for full vaccination and 39% (95%CI, 17%-56%) for partial vaccination. VE for full vaccination was 67% (95%CI, 48%-79%) for children aged 24–59 months, 48% (95%CI, 12%-69%) for children aged 6–23 months, 77% (95%CI, 47%-90%) for 2010–11, 59% (95%CI, 13%-81%) for 2011–12, 33% (95%CI, –18% to 62%) for 2012–13, and 72% (95%CI, 42%-86%) for 2013–14. VE in children aged 24–59 months appeared similar between those vaccinated in both the current and previous seasons and those vaccinated in the current season only, with the exception of 2012–13, when VE was lower for those vaccinated in the current season only. Influenza vaccination is effective in preventing pediatric laboratory-confirmed influenza hospitalizations during most seasons.
Specific immune suppression types have been associated with a greater risk of severe COVID-19 disease and death. We analyzed data from patients >17 years that were hospitalized for COVID-19 at the “Fondazione IRCCS Ca′ Granda Ospedale Maggiore Policlinico” in Milan (Lombardy, Northern Italy). The study included 1727 SARS-CoV-2-positive patients (1,131 males, median age of 65 years) hospitalized between February 2020 and November 2022. Of these, 321 (18.6%, CI: 16.8–20.4%) had at least one condition defining immune suppression. Immune suppressed subjects were more likely to have other co-morbidities (80.4% vs. 69.8%, p < 0.001) and be vaccinated (37% vs. 12.7%, p < 0.001). We evaluated the contribution of immune suppression to hospitalization during the various stages of the epidemic and investigated whether immune suppression contributed to severe outcomes and death, also considering the vaccination status of the patients. The proportion of immune suppressed patients among all hospitalizations (initially stable at <20%) started to increase around December 2021, and remained high (30–50%). This change coincided with an increase in the proportions of older patients and patients with co-morbidities and with a decrease in the proportion of patients with severe outcomes. Vaccinated patients showed a lower proportion of severe outcomes; among non-vaccinated patients, severe outcomes were more common in immune suppressed individuals. Immune suppression was a significant predictor of severe outcomes, after adjusting for age, sex, co-morbidities, period of hospitalization, and vaccination status (OR: 1.64; 95% CI: 1.23–2.19), while vaccination was a protective factor (OR: 0.31; 95% IC: 0.20–0.47). However, after November 2021, differences in disease outcomes between vaccinated and non-vaccinated groups (for both immune suppressed and immune competent subjects) disappeared. Since December 2021, the spread of the less virulent Omicron variant and an overall higher level of induced and/or natural immunity likely contributed to the observed shift in hospitalized patient characteristics. Nonetheless, vaccination against SARS-CoV-2, likely in combination with naturally acquired immunity, effectively reduced severe outcomes in both immune competent (73.9% vs. 48.2%, p < 0.001) and immune suppressed (66.4% vs. 35.2%, p < 0.001) patients, confirming previous observations about the value of the vaccine in preventing serious disease.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes
Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status
Dataset and data visualization details:
These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.
Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.
Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.
Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be updated as more jurisdictions participate.
Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with at least a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6-12 months, half of the single-year population counts for ages <12 months were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred.
Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage.
Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated without an updated (bivalent) booster dose) or vaccinated with an updated (bivalent) booster dose.
Archive: An archive of historic data, including April 3, 2021-September 24, 2022 and posted on October 21, 2022 is available on data.cdc.gov. The analysis by vaccination status (unvaccinated and at least a primary series) for 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a. The analysis for one booster dose (unvaccinated, primary series only, and at least one booster dose) in 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm. The analysis for two booster doses (unvaccinated, primary series only, one booster dose, and at least two booster doses) in 28 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k.
References
Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290.
Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics of fully vaccinated, partially vaccinated, and unvaccinated hospitalized children.
https://www.immport.org/agreementhttps://www.immport.org/agreement
Introduction While it is established that vaccination reduces risk of hospitalization, there is conflicting data on whether it improves outcome among hospitalized COVID-19 patients. This study evaluated clinical outcomes and antibody (Ab) responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection/vaccines in patients with acute respiratory failure (ARF) and various comorbidities. Methods In this single-center study, 152 adult patients were admitted to Ohio State University hospital with ARF (05/2020 – 11/2022) including 112 COVID-19-positive and 40 COVID-19-negative patients. Of the COVID-19 positive patients, 23 were vaccinated for SARS-CoV-2 (Vax), and 89 were not (NVax). Of the NVax COVID-19 patients, 46 were admitted before and 43 after SARS-CoV-2 vaccines were approved. SARS-CoV-2 Ab levels were measured/analyzed based on various demographic and clinical parameters of COVID-19 patients. Additionally, total IgG4 Ab concentrations were compared between the Vax and NVax patients. Results While mortality rates were 36% (n=25) and 27% (n=15) for non-COVID-19 NVax and Vax patients, respectively, in COVID-19 patients mortality rates were 37% (NVax, n=89) and 70% (Vax, n=23). Among COVID-19 patients, mortality rate was significantly higher among Vax vs. NVax patients (p=0.002). The Charlson’s Comorbidity Index score (CCI) was also significantly higher among Vax vs. NVax COVID-19 patients. However, the mortality risk remained significantly higher (p=0.02) when we compared COVID-19 Vax vs. NVax patients with similar CCI score, suggesting that additional factors may increase risk of mortality. Higher levels of SARS-CoV-2 Abs were noted among survivors, suggestive of their protective role. We observed a trend for increased total IgG4 Ab, which promotes immune tolerance, in the Vax vs. NVax patients in week 3. Conclusion Although our cohort size is small, our results suggest that vaccination status of hospital-admitted COVID-19 patients may not be instructive in determining mortality risk. This may reflect that within the general population, those individuals at highest risk for COVID-19 mortality/immune failure are likely to be vaccinated. Importantly, the value of vaccination may be in preventing hospitalization as opposed to stratifying outcome among hospitalized patients, although our data do not address this possibility. Additional research to identify factors predictive of aberrant immunogenic responses to vaccination is warranted.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesTo assess the impact of the initial two-dose-schedule mass vaccination campaign in Chile toward reducing adverse epidemiological outcomes due to SARS-CoV-2 infection.MethodsPublicly available epidemiological data ranging from 3 February 2021 to 30 September 2021 were used to construct GAMLSS models that explain the beneficial effect of up to two doses of vaccination on the following COVID-19-related outcomes: new cases per day, daily active cases, daily occupied ICU beds and daily deaths.ResultsAdministered first and second vaccine doses, and the statistical interaction between the two, are strong, statistically significant predictors for COVID-19-related new cases per day (R2 = 0.847), daily active cases (R2 = 0.903), ICU hospitalizations (R2 = 0.767), and deaths (R2 = 0.827).ConclusionOur models stress the importance of completing vaccination schedules to reduce the adverse outcomes during the pandemic. Future work will continue to assess the influence of vaccines, including booster doses, as the pandemic progresses, and new variants emerge.Policy ImplicationsThis work highlights the importance of attaining full (two-dose) vaccination status and reinforces the notion that a second dose provides increased non-additive protection. The trends we observed may also support the inclusion of booster doses in vaccination plans. These insights could contribute to guiding other countries in their vaccination campaigns.
An age-stratified agent-based model of COVID-19 was used to simulate outbreaks in states within two U. S. regions. The northeastern region consisted of Connecticut, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont. The southern region consisted of Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia and West Virginia. The model was calibrated using reported incidence of COVID-19 in each state from October 1, 2020 to August 31, 2021. It then projected the number of infections, hospitalizations, and deaths that would be averted between September 2021 and the end of March 2022, if states increased their daily vaccination rate.
NOTE: This dataset has been retired and marked as historical-only.
Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.
Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.
Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).
Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.
Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.
CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.
Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.
Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.
Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.
Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.
Data Source: Illinois' National Electronic Disease Surveillance System (I-NEDSS), Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau American Community Survey