23 datasets found
  1. Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

    • zenodo.org
    • data.niaid.nih.gov
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter K. Rogan; Peter K. Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

    This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

    Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

    Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

    Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

    These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

    The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

  2. Visualize A Space Time Cube in 3D

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • hub.arcgis.com
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society for Conservation GIS (2020). Visualize A Space Time Cube in 3D [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/acddde8dae114381889b436fa0ff4b2f
    Explore at:
    Dataset updated
    Dec 3, 2020
    Dataset authored and provided by
    Society for Conservation GIShttp://www.scgis.org/
    Description

    Stamp Out COVID-19An apple a day keeps the doctor away.Linda Angulo LopezDecember 3, 2020https://theconversation.com/coronavirus-where-do-new-viruses-come-from-136105SNAP Participation Rates, was explored and analysed on ArcGIS Pro, the results of which can help decision makers set up further SNAP-D initiatives.In the USA foods are stored in every State and U.S. territory and may be used by state agencies or local disaster relief organizations to provide food to shelters or people who are in need.US Food Stamp Program has been ExtendedThe Supplemental Nutrition Assistance Program, SNAP, is a State Organized Food Stamp Program in the USA and was put in place to help individuals and families during this exceptional time. State agencies may request to operate a Disaster Supplemental Nutrition Assistance Program (D-SNAP) .D-SNAP Interactive DashboardAlmost all States have set up Food Relief Programs, in response to COVID-19.Scroll Down to Learn more about the SNAP Participation Analysis & ResultsSNAP Participation AnalysisInitial results of yearly participation rates to geography show statistically significant trends, to get acquainted with the results, explore the following 3D Time Cube Map:Visualize A Space Time Cube in 3Dhttps://arcg.is/1q8LLPnetCDF ResultsWORKFLOW: a space-time cube was generated as a netCDF structure with the ArcGIS Pro Space-Time Mining Tool : Create a Space Time Cube from Defined Locations, other tools were then used to incorporate the spatial and temporal aspects of the SNAP County Participation Rate Feature to reveal and render statistically significant trends about Nutrition Assistance in the USA.Hot Spot Analysis Explore the results in 2D or 3D.2D Hot Spotshttps://arcg.is/1Pu5WH02D Hot Spot ResultsWORKFLOW: Hot Spot Analysis, with the Hot Spot Analysis Tool shows that there are various trends across the USA for instance the Southeastern States have a mixture of consecutive, intensifying, and oscillating hot spots.3D Hot Spotshttps://arcg.is/1b41T43D Hot Spot ResultsThese trends over time are expanded in the above 3D Map, by inspecting the stacked columns you can see the trends over time which give result to the overall Hot Spot Results.Not all counties have significant trends, symbolized as Never Significant in the Space Time Cubes.Space-Time Pattern Mining AnalysisThe North-central areas of the USA, have mostly diminishing cold spots.2D Space-Time Mininghttps://arcg.is/1PKPj02D Space Time Mining ResultsWORKFLOW: Analysis, with the Emerging Hot Spot Analysis Tool shows that there are various trends across the USA for instance the South-Eastern States have a mixture of consecutive, intensifying, and oscillating hot spots.Results ShowThe USA has counties with persistent malnourished populations, they depend on Food Aide.3D Space-Time Mininghttps://arcg.is/01fTWf3D Space Time Mining ResultsIn addition to obvious planning for consistent Hot-Hot Spot Areas, areas oscillating Hot-Cold and/or Cold-Hot Spots can be identified for further analysis to mitigate the upward trend in food insecurity in the USA, since 2009 which has become even worse since the outbreak of the COVID-19 pandemic.After Notes:(i) The Johns Hopkins University has an Interactive Dashboard of the Evolution of the COVID-19 Pandemic.Coronavirus COVID-19 (2019-nCoV)(ii) Since March 2020 in a Response to COVID-19, SNAP has had to extend its benefits to help people in need. The Food Relief is coordinated within States and by local and voluntary organizations to provide nutrition assistance to those most affected by a disaster or emergency.Visit SNAPs Interactive DashboardFood Relief has been extended, reach out to your state SNAP office, if you are in need.(iii) Follow these Steps to build an ArcGIS Pro StoryMap:Step 1: [Get Data][Open An ArcGIS Pro Project][Run a Hot Spot Analysis][Review analysis parameters][Interpret the results][Run an Outlier Analysis][Interpret the results]Step 2: [Open the Space-Time Pattern Mining 2 Map][Create a space-time cube][Visualize a space-time cube in 2D][Visualize a space-time cube in 3D][Run a Local Outlier Analysis][Visualize a Local Outlier Analysis in 3DStep 3: [Communicate Analysis][Identify your Audience & Takeaways][Create an Outline][Find Images][Prepare Maps & Scenes][Create a New Story][Add Story Elements][Add Maps & Scenes] [Review the Story][Publish & Share]A submission for the Esri MOOCSpatial Data Science: The New Frontier in AnalyticsLinda Angulo LopezLauren Bennett . Shannon Kalisky . Flora Vale . Alberto Nieto . Atma Mani . Kevin Johnston . Orhun Aydin . Ankita Bakshi . Vinay Viswambharan . Jennifer Bell & Nick Giner

  3. Summary of geographically weighted regression analysis result and model...

    • plos.figshare.com
    xls
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tegene Atamenta Kitaw; Biruk Beletew Abate; Befkad Derese Tilahun; Ribka Nigatu Haile (2024). Summary of geographically weighted regression analysis result and model comparisons. [Dataset]. http://doi.org/10.1371/journal.pone.0306645.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tegene Atamenta Kitaw; Biruk Beletew Abate; Befkad Derese Tilahun; Ribka Nigatu Haile
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of geographically weighted regression analysis result and model comparisons.

  4. a

    Albuquerque, New Mexico - Burglary Hot Spots (2015 - 2016)

    • hub.arcgis.com
    Updated Feb 7, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larry Spear's GIS Research Projects (2017). Albuquerque, New Mexico - Burglary Hot Spots (2015 - 2016) [Dataset]. https://hub.arcgis.com/maps/0d3db036147b4b7fbe7a2691ed723722
    Explore at:
    Dataset updated
    Feb 7, 2017
    Dataset authored and provided by
    Larry Spear's GIS Research Projects
    Area covered
    Description

    Created using ArcGIS Pro Geoprocessing tools (Create Space Time Cube, Emerging Hot Spot Analysis, and Enrich Layer) and the ArcGIS R Bridge. The EBest function, part of the spdep package was used to calculate an Empirical Bayes smoothed crime rate with 2016 population estimates. This procedure is presented as part of the R-ArcGIS Workflow Demo on GeoNet.Relative Burglary Risk is the natural log (Ln) of the kernel density of burglaries g(x) divided by the kernel density of households g(y) calculated using CrimeStat. Note: Ten months of burglary data (the minimum required) were used for this initial analysis. Also Note: These locations are one-half kilometer square polygons. It will be updated in the future as more data from the Albuquerque Police Department is obtained (see ABQ Data).Please see the web map for another similar way to present these results.More information at (http://www.unm.edu/~lspear/other_nm.html).

  5. Supplementary data for article "Unveiling Leptospirosis Hotspots with Earth...

    • figshare.com
    application/csv
    Updated Jun 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Akram Ab Kadir (2024). Supplementary data for article "Unveiling Leptospirosis Hotspots with Earth Observation and AI" [Dataset]. http://doi.org/10.6084/m9.figshare.26075464.v1
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Jun 21, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Muhammad Akram Ab Kadir
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Data was used for the study "Unveiling Leptospirosis Hotspots with Earth Observation and AI".The study embarks on the spatiotemporal analysis of leptospirosis hotspot areas in Selangor using secondary data from 2011 to 2019. Point shape files were plotted based on the coordinates of case's possible source of infection. Cases were aggregated according to respective subdistrict polygon areas. Monthly Hotspot analysis was initially conducted using the Getis Ord Gi* in ArcGIS Pro software. Satellite data for monthly rainfall and LST was retrieved from the NASA Geovanni EarthData website. Monthly values (2-11-2019) for every subdistrict were extracted using ArcGIS Pro software.Data contains monthly data for 55 subdistricts in Selangor (not individually labelled) from 2011 to 2019 - (5 columns and 5940 rows)leptospirosis hotspot (H) (Yes[1] or No[0].Precipitation (P) - monthly values in millimetresLand Surface Temperature (T) - monthly values in degrees Celsius (oC)The code snippets used for machine learning data analysis are also available. Codes include three algorithms used:LGBM, 2. Random Forest, and 3. SVM

  6. a

    Albuquerque Crime Hot Spots, 2016

    • hub.arcgis.com
    Updated Jun 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larry Spear's GIS Research Projects (2017). Albuquerque Crime Hot Spots, 2016 [Dataset]. https://hub.arcgis.com/maps/16015d2fdaf44370b16f80a8dcd8881a
    Explore at:
    Dataset updated
    Jun 23, 2017
    Dataset authored and provided by
    Larry Spear's GIS Research Projects
    Area covered
    Description

    Albuquerque, NM 2016 crimes. Created using ArcGIS Pro Geoprocessing tools (Create Space Time Cube, Emerging Hot Spot Analysis). Data obtained from the Albuquerque Police Department (see ABQ Data). Note: Composite of all crime types reported by APD.

  7. Supplementary data for article "Unveiling Leptospirosis Hotspots with Earth...

    • figshare.com
    txt
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Akram Ab Kadir (2024). Supplementary data for article "Unveiling Leptospirosis Hotspots with Earth Observation and AI".csv [Dataset]. http://doi.org/10.6084/m9.figshare.26065945.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Muhammad Akram Ab Kadir
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Data contain monthly data for 55 subdistricts in Selangor (not individually labelled) from 2011 tp 2019 - (5 columns and 5940 rows)leptospirosis hotspot (H) (Yes[1] or No[0].Precipitation (P) - monthly values in millimetresLans Surface Temperature (T) - monthly values in degrees celcius (oC) The monthly hotspots were analused using the Getis Ord Gi* hotspot analysis in the ArcGIS Pro software Leptospirosis cases were extracted from State Health Department, satellite data from the NASA Geovanni EarthData website.

  8. a

    Regional Forest Loss Emerging Hot Spots

    • thrive-geohub-igtlab.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Oct 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Tennessee at Chattanooga IGTLab (2018). Regional Forest Loss Emerging Hot Spots [Dataset]. https://thrive-geohub-igtlab.opendata.arcgis.com/datasets/regional-forest-loss-emerging-hot-spots
    Explore at:
    Dataset updated
    Oct 24, 2018
    Dataset authored and provided by
    University of Tennessee at Chattanooga IGTLab
    Area covered
    Description

    This layer maps emerging hot spots of statistically significant areas of forest loss aggregated into 1-mile bins, by year from 2001-2017. This layer was created by running the Emerging Hot Spot Analysis tool in ArcGIS pro using Hansen Forest Loss data for the Thrive region. That data was converted from raster to vector and converted to points. The points data was used to create a space-time cube, used to map changing and persistent hot spots of forest loss over time. This data does not take into account forestry practices or weather events for the region.

  9. u

    High-high cluster and high-low outlier road intersections for motorcycle...

    • zivahub.uct.ac.za
    docx
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simone Vieira; Simon Hull; Roger Behrens (2024). High-high cluster and high-low outlier road intersections for motorcycle road traffic crashes resulting in injuries within the CoCT in 2017, 2018 and 2019 [Dataset]. http://doi.org/10.25375/uct.25967455.v2
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    University of Cape Town
    Authors
    Simone Vieira; Simon Hull; Roger Behrens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset offers a detailed inventory of road intersections and their corresponding suburbs within Cape Town, meticulously curated to highlight instances of high motorcycle (Motorcycle: Above 125cc, Motorcycle: 125cc and under, Quadru-cycle, Motor Tricycle) crash counts that resulted in injuries (slight, serious, fatalities) observed in "high-high" cluster and "high-low" outlier fishnet grid cells across the years 2017, 2018 and 2019. To enhance its utility, the dataset meticulously colour-codes each month associated with elevated crash occurrences, providing a nuanced perspective. Furthermore, the dataset categorises road intersections based on their placement within "high-high" clusters (marked with pink tabs) or "high-low" outlier cells (indicated by red tabs). For ease of navigation, the intersections are further organised alphabetically by suburb name, ensuring accessibility and clarity.Data SpecificsData Type: Geospatial-temporal categorical data with numeric attributesFile Format: Word document (.docx)Size: 157 KBNumber of Files: The dataset contains a total of 158 road intersection records (11 "high-high" clusters and 147 "high-low" outliers)Date Created: 22nd May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, Open Refine, Python, SQLProcessing Steps: The raw road traffic crash data underwent a comprehensive refining process using Python software to ensure its accuracy and consistency. Following this, duplicates were eliminated to retain only one entry per crash incident. Subsequently, the data underwent further refinement with Open Refine software, focusing specifically on isolating unique crash descriptions for subsequent geocoding in ArcGIS Pro. Notably, during this process, only the road intersection crashes were retained, as they were the only incidents with spatial definitions.Once geocoded, road intersection crashes that involved either a motor tricycle, motorcycle above 125cc, motorcycle below 125cc and quadru-cycles and that were additionally associated with a slight, severe or fatal injury type were extracted so that subsequent spatio-temporal analyses would focus on these crashes only. The spatio-temporal analysis methods by which these motorcycle crashes were analysed included spatial autocorrelation, hotspot analysis, and cluster and outlier analysis. Leveraging these methods, road intersections with motorcycle crashes identified as either "high-high" clusters or "high-low" outliers were extracted for inclusion in the dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2019

  10. e

    Administrative 1

    • climate.esri.ca
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Administrative 1 [Dataset]. https://climate.esri.ca/datasets/arcgis-content::administrative-1
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 from 1998 to 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality globally. Some of the things we can learn from this layer:What is the average annual PM 2.5 value over 19 years? (1998-2016)What is the annual average PM 2.5 value for each year from 1998 to 2016?What is the statistical trend for PM 2.5 over the 19 years? (downward or upward)Are there hot spots (or cold spots) of PM 2.5 over the 19 years?How many people are impacted by the air quality in an area?What is the death rate caused by the joint effects of air pollution?Choose a different attribute to symbolize in order to reveal any of the patterns above.A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis, trends, and a 19-year average. The country and administrative 1 layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries and population figures:Antarctica is excluded from all maps because it was not included in the original NASA grids.50km hex bins generated using the Generate Tessellation tool - projected to Behrmann Equal Area projection for analysesPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Administrative boundaries from World Administrative Divisions layer from ArcGIS Living Atlas - projected to Behrmann Equal Area projection for analyses and hosted in Web MercatorSources: Garmin, CIA World FactbookPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Country boundaries from Esri 2019 10.8 Data and Maps - projected to Behrmann Equal Area projection for analyses and hosted in Web Mercator. Sources: Garmin, Factbook, CIAPopulation figures attached to the country boundaries come from the World Population Estimate 2016 Sources Living Atlas layer Data processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The layers are hosted in Web Mercator Auxillary Sphere projection, but were processed using an equal area projection: Behrmann. If using this layer for analysis, it is recommended to start by projecting the data back to Behrmann.The country and administrative layer were dissolved and joined with population figures in order to visualize human impact.The dissolve tool ensures that each geographic area is only symbolized once within the map.Country boundaries were generalized post-analysis for visualization purposes. The tolerance used was 700m. If performing analysis with this layer, find detailed country boundaries in ArcGIS Living Atlas. To create the population-weighted attributes on the country and Admin 1 layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and the PM2.5 and population figures were summarized within the country and Admin 1 boundaries.The summation of the PM 2.5 values were then divided by the total population of each geography. This population value was determined by summarizing the population values from the hex bins within each geography.Some artifacts in the hex bin layer as a result of the input NASA rasters. Because the gridded surface is created from multiple satellites, there are strips within some areas that are a result of satellite paths. Some areas also have more of a continuous pattern between hex bins as a result of the input rasters.Within the country layer, an air pollution attributable death rate is included. 2016 figures are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.To learn the techniques used in this analysis, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie.

  11. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Arkansas, Hot Springs
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  12. u

    High-high cluster and high-low outlier road intersections for road traffic...

    • zivahub.uct.ac.za
    docx
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simone Vieira; Simon Hull; Roger Behrens (2024). High-high cluster and high-low outlier road intersections for road traffic crashes involving severely injured pedestrians within the CoCT in 2017, 2018 and 2019 [Dataset]. http://doi.org/10.25375/uct.25974964.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    University of Cape Town
    Authors
    Simone Vieira; Simon Hull; Roger Behrens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    City of Cape Town
    Description

    This dataset offers a detailed inventory of road intersections and their corresponding suburbs within Cape Town, meticulously curated to highlight instances of high pedestrian crash counts resulting in serious injuries observed in "high-high" cluster and "high-low" outlier fishnet grid cells across the years 2017, 2018 and 2019. To enhance its utility, the dataset meticulously colour-codes each month associated with elevated crash occurrences, providing a nuanced perspective. Furthermore, the dataset categorises road intersections based on their placement within "high-high" clusters (marked with pink tabs) or "high-low" outlier cells (indicated by red tabs). For ease of navigation, the intersections are further organised alphabetically by suburb name, ensuring accessibility and clarity.Data SpecificsData Type: Geospatial-temporal categorical data with numeric attributesFile Format: Word document (.docx)Size: 231 KBNumber of Files: The dataset contains a total of 245 road intersection records (7 "high-high" clusters and 238 "high-low" outliers)Date Created: 21st May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, Open Refine, Python, SQLProcessing Steps: The raw road traffic crash data underwent a comprehensive refining process using Python software to ensure its accuracy and consistency. Following this, duplicates were eliminated to retain only one entry per crash incident. Subsequently, the data underwent further refinement with Open Refine software, focusing specifically on isolating unique crash descriptions for subsequent geocoding in ArcGIS Pro. Notably, during this process, only the road intersection crashes were retained, as they were the only incidents with spatial definitions.Once geocoded, road intersection crashes that involved a pedestrian with a severe or fatal injury type were extracted so that subsequent spatio-temporal analyses would focus on these crashes only. The spatio-temporal analysis methods by which these pedestrian crashes were analysed included spatial autocorrelation, hotspot analysis, and cluster and outlier analysis. Leveraging these methods, road intersections with pedestrian crashes that resulted in a severe injury identified as either "high-high" clusters or "high-low" outliers were extracted for inclusion in the dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2019

  13. a

    Country

    • keep-cool-global-community.hub.arcgis.com
    • climat.esri.ca
    • +3more
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Country [Dataset]. https://keep-cool-global-community.hub.arcgis.com/maps/arcgis-content::country-1
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 from 1998 to 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality globally. Some of the things we can learn from this layer:What is the average annual PM 2.5 value over 19 years? (1998-2016)What is the annual average PM 2.5 value for each year from 1998 to 2016?What is the statistical trend for PM 2.5 over the 19 years? (downward or upward)Are there hot spots (or cold spots) of PM 2.5 over the 19 years?How many people are impacted by the air quality in an area?What is the death rate caused by the joint effects of air pollution?Choose a different attribute to symbolize in order to reveal any of the patterns above.A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis, trends, and a 19-year average. The country and administrative 1 layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries and population figures:Antarctica is excluded from all maps because it was not included in the original NASA grids.50km hex bins generated using the Generate Tessellation tool - projected to Behrmann Equal Area projection for analysesPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Administrative boundaries from World Administrative Divisions layer from ArcGIS Living Atlas - projected to Behrmann Equal Area projection for analyses and hosted in Web MercatorSources: Garmin, CIA World FactbookPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Country boundaries from Esri 2019 10.8 Data and Maps - projected to Behrmann Equal Area projection for analyses and hosted in Web Mercator. Sources: Garmin, Factbook, CIAPopulation figures attached to the country boundaries come from the World Population Estimate 2016 Sources Living Atlas layer Data processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The layers are hosted in Web Mercator Auxillary Sphere projection, but were processed using an equal area projection: Behrmann. If using this layer for analysis, it is recommended to start by projecting the data back to Behrmann.The country and administrative layer were dissolved and joined with population figures in order to visualize human impact.The dissolve tool ensures that each geographic area is only symbolized once within the map.Country boundaries were generalized post-analysis for visualization purposes. The tolerance used was 700m. If performing analysis with this layer, find detailed country boundaries in ArcGIS Living Atlas. To create the population-weighted attributes on the country and Admin 1 layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and the PM2.5 and population figures were summarized within the country and Admin 1 boundaries.The summation of the PM 2.5 values were then divided by the total population of each geography. This population value was determined by summarizing the population values from the hex bins within each geography.Some artifacts in the hex bin layer as a result of the input NASA rasters. Because the gridded surface is created from multiple satellites, there are strips within some areas that are a result of satellite paths. Some areas also have more of a continuous pattern between hex bins as a result of the input rasters.Within the country layer, an air pollution attributable death rate is included. 2016 figures are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.To learn the techniques used in this analysis, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie.

  14. o

    Rural-urban disparities in post-acute therapy utilization: identifying hot...

    • openicpsr.org
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tiago Jesus (2025). Rural-urban disparities in post-acute therapy utilization: identifying hot spots of low utilization among fee-for-service Medicare beneficiaries toward informing policy and public health interventions [Dataset]. http://doi.org/10.3886/E233575V1
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    The Ohio State University
    Authors
    Tiago Jesus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2013 - Dec 31, 2022
    Area covered
    USA, nationwide
    Description

    This project has two aims, each one described below.Aim 1: To quantify rural-urban disparities in rehabilitation therapy utilization (IRFs/ SNFs/ HHAs) among FFS Medicare beneficiaries (2021) and evaluate their change over time (2013-2021). Hypothesis 1: Rural Fee For Service (FFS) Medicare beneficiaries had lower therapy utilization than urban counterparts in 2021. Hypothesis 2: Rural disparities have been stagnant or increased as opposed to significantly reduced over time (2013-2021), stratified for the pre- (2013-2019) and post-pandemic (2020-2021) times. We will use hierarchical linear multiple regressions. Dependent variable: counties’ therapy utilization rate for IRFs, SNFs, and HHAs combined. Independent variable: rural area, per two indicators: a) rural residency of FFS beneficiaries b) rural county gradient. Covariates: 1) FFS beneficiaries’ characteristics; 2) FFS Medicare expenditures; 3) counties’ disability statistics, e.g., poverty; 4) community-level health, health access and social determinants of health; and 6) regions and states. The significance of the interaction between years and rurality will be tested. Aim 2: To build interactive, user-centered maps of rehabilitation therapy utilization (IRFs / SNFs / HHAs), identifying hot spots of low utilization (in 2021) and their evolving trends (2013-2021). A GIS (ArcGIS Pro) will be used to spatiotemporally analyze the data used in the Aim 1. First, we will develop choropleth maps: gradients of county-level utilization rates, intersected with rural areas. Second, hot spot analyses (statistical spatial clustering) will map clusters of counties with low utilization. Third, a spatiotemporal, emerging hot spot analysis (2013-2021) will map areas with up to eight types of time-trends such as those showing an intensifying or persistent low utilization. The spatiotemporal analysis will be also stratified for the pre- (2013-2019) and post-pandemic (2020-2021) time periods. All the maps, with customizable options, will be shared online for public access. An Advisory Group of target end-users (e.g., disability advocates, public health agents) will provide input throughout to design the maps’ attributes and refine them after beta testing

  15. c

    50km Hex Bins

    • cacgeoportal.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). 50km Hex Bins [Dataset]. https://www.cacgeoportal.com/datasets/arcgis-content::50km-hex-bins
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 from 1998 to 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality globally. Some of the things we can learn from this layer:What is the average annual PM 2.5 value over 19 years? (1998-2016)What is the annual average PM 2.5 value for each year from 1998 to 2016?What is the statistical trend for PM 2.5 over the 19 years? (downward or upward)Are there hot spots (or cold spots) of PM 2.5 over the 19 years?How many people are impacted by the air quality in an area?What is the death rate caused by the joint effects of air pollution?Choose a different attribute to symbolize in order to reveal any of the patterns above.A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis, trends, and a 19-year average. The country and administrative 1 layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries and population figures:Antarctica is excluded from all maps because it was not included in the original NASA grids.50km hex bins generated using the Generate Tessellation tool - projected to Behrmann Equal Area projection for analysesPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Administrative boundaries from World Administrative Divisions layer from ArcGIS Living Atlas - projected to Behrmann Equal Area projection for analyses and hosted in Web MercatorSources: Garmin, CIA World FactbookPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Country boundaries from Esri 2019 10.8 Data and Maps - projected to Behrmann Equal Area projection for analyses and hosted in Web Mercator. Sources: Garmin, Factbook, CIAPopulation figures attached to the country boundaries come from the World Population Estimate 2016 Sources Living Atlas layer Data processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The layers are hosted in Web Mercator Auxillary Sphere projection, but were processed using an equal area projection: Behrmann. If using this layer for analysis, it is recommended to start by projecting the data back to Behrmann.The country and administrative layer were dissolved and joined with population figures in order to visualize human impact.The dissolve tool ensures that each geographic area is only symbolized once within the map.Country boundaries were generalized post-analysis for visualization purposes. The tolerance used was 700m. If performing analysis with this layer, find detailed country boundaries in ArcGIS Living Atlas. To create the population-weighted attributes on the country and Admin 1 layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and the PM2.5 and population figures were summarized within the country and Admin 1 boundaries.The summation of the PM 2.5 values were then divided by the total population of each geography. This population value was determined by summarizing the population values from the hex bins within each geography.Some artifacts in the hex bin layer as a result of the input NASA rasters. Because the gridded surface is created from multiple satellites, there are strips within some areas that are a result of satellite paths. Some areas also have more of a continuous pattern between hex bins as a result of the input rasters.Within the country layer, an air pollution attributable death rate is included. 2016 figures are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.To learn the techniques used in this analysis, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie.

  16. c

    Global Particulate Matter (PM) 2.5 between 1998-2016

    • cacgeoportal.com
    • climat.esri.ca
    • +4more
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Global Particulate Matter (PM) 2.5 between 1998-2016 [Dataset]. https://www.cacgeoportal.com/maps/01a55265757f402a8c4a3eaa2845cd0c
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 from 1998 to 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality globally. Some of the things we can learn from this layer:What is the average annual PM 2.5 value over 19 years? (1998-2016)What is the annual average PM 2.5 value for each year from 1998 to 2016?What is the statistical trend for PM 2.5 over the 19 years? (downward or upward)Are there hot spots (or cold spots) of PM 2.5 over the 19 years?How many people are impacted by the air quality in an area?What is the death rate caused by the joint effects of air pollution?Choose a different attribute to symbolize in order to reveal any of the patterns above.A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis, trends, and a 19-year average. The country and administrative 1 layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries and population figures:Antarctica is excluded from all maps because it was not included in the original NASA grids.50km hex bins generated using the Generate Tessellation tool - projected to Behrmann Equal Area projection for analysesPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Administrative boundaries from World Administrative Divisions layer from ArcGIS Living Atlas - projected to Behrmann Equal Area projection for analyses and hosted in Web MercatorSources: Garmin, CIA World FactbookPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Country boundaries from Esri 2019 10.8 Data and Maps - projected to Behrmann Equal Area projection for analyses and hosted in Web Mercator. Sources: Garmin, Factbook, CIAPopulation figures attached to the country boundaries come from the World Population Estimate 2016 Sources Living Atlas layer Data processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The layers are hosted in Web Mercator Auxillary Sphere projection, but were processed using an equal area projection: Behrmann. If using this layer for analysis, it is recommended to start by projecting the data back to Behrmann.The country and administrative layer were dissolved and joined with population figures in order to visualize human impact.The dissolve tool ensures that each geographic area is only symbolized once within the map.Country boundaries were generalized post-analysis for visualization purposes. The tolerance used was 700m. If performing analysis with this layer, find detailed country boundaries in ArcGIS Living Atlas. To create the population-weighted attributes on the country and Admin 1 layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and the PM2.5 and population figures were summarized within the country and Admin 1 boundaries.The summation of the PM 2.5 values were then divided by the total population of each geography. This population value was determined by summarizing the population values from the hex bins within each geography.Some artifacts in the hex bin layer as a result of the input NASA rasters. Because the gridded surface is created from multiple satellites, there are strips within some areas that are a result of satellite paths. Some areas also have more of a continuous pattern between hex bins as a result of the input rasters.Within the country layer, an air pollution attributable death rate is included. 2016 figures are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.To learn the techniques used in this analysis, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie.

  17. a

    Earthquake and Tsunami Event Analysis of the Seattle Metropolitan Area by...

    • seattle-metro-area-earthquake-analysis-gisanddata.hub.arcgis.com
    Updated Jul 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vlangle1_GISandData (2022). Earthquake and Tsunami Event Analysis of the Seattle Metropolitan Area by VBL (Educational Use Only) [Dataset]. https://seattle-metro-area-earthquake-analysis-gisanddata.hub.arcgis.com/items/0de143c4b2e7472fa69bd2c7d777c956
    Explore at:
    Dataset updated
    Jul 19, 2022
    Dataset authored and provided by
    vlangle1_GISandData
    Area covered
    Seattle Metropolitan Area
    Description

    Map Series of multiple analysis procedures performed in ArcGIS Pro and ArcGIS Online. Analysis performed are: Pairwise Clip, Hot Spot Analysis. Join-Spatial Layers, and Colocation.Maps in series:1. Active Faults2. Population of Seattle Metropolitan Area3. Vulnerability Map,4. Colocation Analysis of Unreinforced Buildings City of Seattle5. Seattle Fault Shake Intensity Map6. Population Seattle Fault Earthquake7. Seattle Fault Vulnerability Map8. Cascadia Subduction Zone Shake Intensity Map9. Population Cascadia Subduction Zone Earthquake10. High Risk Vulnerability Cascadia Fault Earthquake Event11. Cascadia Subduction Zone Tsunami Energy (1700 Earthquake Event)12 Tsunami Impact and Population13. At Risk Population Tsunami Impact14. Highest Risk Vulnerability

  18. u

    High-high cluster and high-low outlier road intersections for public...

    • zivahub.uct.ac.za
    docx
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simone Vieira; Simon Hull; Roger Behrens (2024). High-high cluster and high-low outlier road intersections for public transport road traffic crashes within the CoCT in 2017, 2018, 2019 and 2021 [Dataset]. http://doi.org/10.25375/uct.25968106.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    University of Cape Town
    Authors
    Simone Vieira; Simon Hull; Roger Behrens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    City of Cape Town
    Description

    This dataset offers a detailed inventory of road intersections and their corresponding suburbs within Cape Town, meticulously curated to highlight instances of high public transport (Bus, Bus-train, Combi/minibus, Midibus) crash counts observed in "high-high" cluster and "high-low" outlier fishnet grid cells across the years 2017, 2018, 2019, and 2021. To enhance its utility, the dataset meticulously colour-codes each month associated with elevated crash occurrences, providing a nuanced perspective. Furthermore, the dataset categorises road intersections based on their placement within "high-high" clusters (marked with pink tabs) or "high-low" outlier cells (indicated by red tabs). For ease of navigation, the intersections are further organised alphabetically by suburb name, ensuring accessibility and clarity.Data SpecificsData Type: Geospatial-temporal categorical data with numeric attributesFile Format: Word document (.docx)Size: 49,0 KBNumber of Files: The dataset contains a total of 40 road intersection records (28 "high-high" clusters and 12 "high-low" outliers)Date Created: 21st May 2024MethodologyData Collection Method: The descriptive road traffic crash data per crash victim involved in the crashes was obtained from the City of Cape Town Network InformationSoftware: ArcGIS Pro, Open Refine, Python, SQLProcessing Steps: The raw road traffic crash data underwent a comprehensive refining process using Python software to ensure its accuracy and consistency. Following this, duplicates were eliminated to retain only one entry per crash incident. Subsequently, the data underwent further refinement with Open Refine software, focusing specifically on isolating unique crash descriptions for subsequent geocoding in ArcGIS Pro. Notably, during this process, only the road intersection crashes were retained, as they were the only incidents with spatial definitions.Once geocoded, road intersection crashes that involved either a bus, a bus/train, combi/minibus and midibuses were extracted so that subsequent spatio-temporal analyses would focus on these crashes only. The spatio-temporal analysis methods by which the public transport crashes were analysed included spatial autocorrelation, hotspot analysis, and cluster and outlier analysis. Leveraging these methods, road intersections with public transport crashes identified as either "high-high" clusters or "high-low" outliers were extracted for inclusion in the dataset.Geospatial InformationSpatial Coverage:West Bounding Coordinate: 18°20'EEast Bounding Coordinate: 19°05'ENorth Bounding Coordinate: 33°25'SSouth Bounding Coordinate: 34°25'SCoordinate System: South African Reference System (Lo19) using the Universal Transverse Mercator projectionTemporal InformationTemporal Coverage:Start Date: 01/01/2017End Date: 31/12/2021 (2020 data omitted)

  19. How Does Air Quality Vary with Population Growth?

    • legacy-cities-lincolninstitute.hub.arcgis.com
    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • +1more
    Updated Apr 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). How Does Air Quality Vary with Population Growth? [Dataset]. https://legacy-cities-lincolninstitute.hub.arcgis.com/maps/b463298124d4416c8efb932d37faf4fd
    Explore at:
    Dataset updated
    Apr 24, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the change in particulate matter 2.5 (PM 2.5) air quality data for the US between 2010 and 2016 based on NASA SEDAC gridded data. The color indicates better or worse air quality, and the size of the symbol indicates population growth.This map shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into state, county, congressional district (116th) and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality in the United States, including Puerto Rico. A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis. The county and state layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Each layer has been enriched with a set of 2019 US demographic attributes (excluding Puerto Rico) apportioned to the geography in order to map patterns alongside each other. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries:50km hex bins generated using the Generate Tessellation toolStates and counties come from 2018 TIGER boundaries with coastlines clipped116th Congressional Districts come from this ArcGIS Living Atlas layerData processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The Enrich tool was run to add 2019 Esri demographic and 2014-2018 ACS attributes to the geographies. Attributes such as population, poverty, minority population, and others were added to the layer.To create the population-weighted attributes on the state and county layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and summarized within the state and county boundaries.The summation of these values were then divided by the total population of each state/county.

  20. a

    Congressional Districts 116th

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Apr 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Congressional Districts 116th [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/arcgis-content::congressional-districts-116th
    Explore at:
    Dataset updated
    Apr 10, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into state, county, congressional district (116th) and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality in the United States, including Puerto Rico. A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis. The county and state layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Each layer has been enriched with a set of 2019 US demographic attributes (excluding Puerto Rico) apportioned to the geography in order to map patterns alongside each other. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries:50km hex bins generated using the Generate Tessellation toolStates and counties come from 2018 TIGER boundaries with coastlines clipped116th Congressional Districts come from this ArcGIS Living Atlas layerData processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The Enrich tool was run to add 2019 Esri demographic and 2014-2018 ACS attributes to the geographies. Attributes such as population, poverty, minority population, and others were added to the layer.To create the population-weighted attributes on the state and county layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and summarized within the state and county boundaries.The summation of these values were then divided by the total population of each state/county. This population value was determined by summarizing the population values from the hex bins within each geography.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
Organization logo

Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

Explore at:
Dataset updated
Sep 17, 2020
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Peter K. Rogan; Peter K. Rogan
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
United States
Description

Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

Search
Clear search
Close search
Google apps
Main menu