90 datasets found
  1. k

    Saudi Arabia Hourly Climate Integrated Surface Data

    • datasource.kapsarc.org
    • data.kapsarc.org
    • +1more
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Saudi Arabia Hourly Climate Integrated Surface Data [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-hourly-weather-data/
    Explore at:
    Dataset updated
    Dec 15, 2024
    Area covered
    Saudi Arabia
    Description

    Saudi Arabia hourly climate integrated surface data with the below data observations, WindSky conditionVisibilityAir temperatureDewSea level pressureNote: The dataset will contain the last 5 years hourly data, however, check the attachments section in this dataset if you need historical data.

  2. d

    Data from: Dynamically Downscaled Hourly Future Weather Data with 12-km...

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Argonne National Laboratory (2025). Dynamically Downscaled Hourly Future Weather Data with 12-km Resolution Covering Most of North America [Dataset]. https://catalog.data.gov/dataset/dynamically-downscaled-hourly-future-weather-data-with-12-km-resolution-covering-most-of-n
    Explore at:
    Dataset updated
    May 31, 2025
    Dataset provided by
    Argonne National Laboratory
    Area covered
    North America
    Description

    This is an hourly future weather dataset for energy modeling applications. The dataset is primarily based on the output of a regional climate model (RCM), i.e., the Weather Research and Forecasting (WRF) model version 3.3.1. The WRF simulations are driven by the output of a general circulation model (GCM), i.e., the Community Climate System Model version 4 (CCSM4). This dataset is in the EPW format, which can be read or translated by more than 25 building energy modeling programs (e.g., EnergyPlus, ESP-r, and IESVE), energy system modeling programs (e.g., System Advisor Model (SAM)), indoor air quality analysis programs (e.g., CONTAM), and hygrothermal analysis programs (e.g., WUFI). It contains 13 weather variables, which are the Dry-Bulb Temperature, Dew Point Temperature, Relative Humidity, Atmospheric Pressure, Horizontal Infrared Radiation Intensity from Sky, Global Horizontal Irradiation, Direct Normal Irradiation, Diffuse Horizontal Irradiation, Wind Speed, Wind Direction, Sky Cover, Albedo, and Liquid Precipitation Depth. This dataset provides future weather data under two emissions scenarios - RCP4.5 and RCP8.5 - across two 10-year periods (2045-2054 and 2085-2094). It also includes simulated historical weather data for 1995-2004 to serve as the baseline for climate impact assessments. We strongly recommend using this built-in baseline rather than external sources (e.g., TMY3) for two key reasons: (1) it shares the same model grid as the future projections, thereby minimizing geographic-averaging bias, and (2) both historical and future datasets were generated by the same RCM, so their differences yield anomalies largely free of residual model bias. This dataset offers a spatial resolution of 12 km by 12 km with extensive coverage across most of North America. Due to the enormous size of the entire dataset, in the first stage of its distribution, we provide weather data for the centroid of each Public Use Microdata Area (PUMA), excluding Hawaii. PUMAs are non-overlapping, statistical geographic areas that partition each state or equivalent entity into geographic areas containing no fewer than 100,000 people each. The 2,378 PUMAs as a whole cover the entirety of the U.S. The weather data can be utilized alongside the large-scale energy analysis tools, ResStock and ComStock, developed by National Renewable Energy Laboratory, whose smallest resolution is at the PUMA scale.

  3. MIDAS Open: UK hourly weather observation data, v202407

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2024). MIDAS Open: UK hourly weather observation data, v202407 [Dataset]. https://catalogue.ceda.ac.uk/uuid/c50776e4903942cdb329589da70b83fe
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Met Office
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1875 - Dec 31, 2023
    Area covered
    Description

    The UK hourly weather observation data contain meteorological values measured on an hourly time scale. The measurements of the concrete state, wind speed and direction, cloud type and amount, visibility, and temperature were recorded by observation stations operated by the Met Office across the UK and transmitted within SYNOP, DLY3208, AWSHRLY and NCM messages. The sunshine duration measurements were transmitted in the HSUN3445 message. The data spans from 1875 to 2023.

    This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.

    For details on observing practice see the message type information in the MIDAS User Guide linked from this record and relevant sections for parameter types.

    This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Note, METAR message types are not included in the Open version of this dataset. Those data may be accessed via the full MIDAS hourly weather data.

  4. Stuttgart local weather data archive

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Stuttgart local weather data archive [Dataset]. https://catalog.data.gov/dataset/stuttgart-local-weather-data-archive-b86fa
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Area covered
    Stuttgart
    Description

    Weather data from two weather stations at Stuttgart Rice Research and Extension center are archived. Current air temperature, relative humidity, wind speed, solar radiation and soil temperature data are provided by station and are displayed and archived either hourly or daily. Historical weather data goes back to 2008. Resources in this dataset:Resource Title: Weather Station Data. File Name: Web Page, url: https://www.ars.usda.gov/southeast-area/stuttgart-ar/dale-bumpers-national-rice-research-center/docs/weather-station-data/

  5. d

    CustomWeather Rainfall API: Rainfall Forecast and Historical Weather Data...

    • datarade.ai
    .json, .xml, .csv
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CustomWeather (2023). CustomWeather Rainfall API: Rainfall Forecast and Historical Weather Data with Global Coverage [Dataset]. https://datarade.ai/data-products/customweather-rainfall-api-rainfall-forecast-and-historical-customweather
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset authored and provided by
    CustomWeather
    Area covered
    Holy See, South Georgia and the South Sandwich Islands, Qatar, Tokelau, Brunei Darussalam, Fiji, Kuwait, Lebanon, Iran (Islamic Republic of), Ecuador
    Description

    The backbone of CustomWeather's forecasting arm is our proven, high-resolution model, the CW100. The CW100 Model is based on physics, not statistics or airport observations. As a result, it can achieve significantly better accuracy than statistical models, especially for non-airport locations. While other forecast models are designed to forecast the entire atmosphere, the CW100 greatly reduces computational requirements by focusing entirely on conditions near the ground. This reduction of computations allows it to resolve additional physical processes near the ground that are not resolved by other models. It also allows the CW100 to operate at a much higher resolution, typically 100x finer than standard models and other gridded forecasts.

    Detailed Forecasts:
    Features a detailed 48-hour outlook broken into four segments per day: morning, afternoon, evening, and overnight. Each segment provides condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, 6-hr forecasted precip amounts, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Extended Forecasts Days 1-15:
    Features condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Hour-by-Hour Forecasts: Features Hour-by-Hour forecasts. The product is available as 12 hour, 48 hour and 168 hour blocks. Each hourly forecast includes weather descriptions, wind conditions, temperature, dew point, humidity, visibility, rainfall totals, snowfall totals, and precipitation probability. Available for over 85,000 forecast points globally. Updated four times per day.

    Historical Longer Term Forecasts: Includes historical hourly and/or daily forecast data from 2009 until present date. Data will include condition descriptions, high/low temperatures, wind speed and direction, dew point, humidity, comfort level, UV index, probability of precipitation, rainfall and snowfall amounts. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Below are available time periods per each type of forecast from the GFS model and from CustomWeather's proprietary CW100 model:

    GFS: 7-day hourly forecasts from August 2nd 2009; 48-hour to 5-day detailed forecasts from August 4th 2009; 15-day forecasts from October 9th 2008.

    CW100: 7-day hourly forecasts from November 27, 2012; 48-hour detailed forecasts from November 12, 2011; 7-day forecasts from December 6, 2010, 15-day forecasts from August 6, 2012. CW100 is CustomWeather's proprietary model.

    MOS: (Model Output Statistics) for any global location using archive of model and observation data. 0.25 degree resolution. 15-day hourly forecasts from January 1, 2017; 15-day forecasts from April 19, 2017.

  6. t

    Local Weather Archive

    • data.townofcary.org
    • datadiscoverystudio.org
    • +3more
    csv, excel, json
    Updated Feb 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Local Weather Archive [Dataset]. https://data.townofcary.org/explore/dataset/rdu-weather-history/
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Feb 14, 2016
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains Raleigh Durham International Airport weather data pulled from the NOAA web service described at Climate Data Online: Web Services Documentation. We have pulled this data and converted it to commonly used units. This dataset is an archive - it is not being updated.

  7. d

    CustomWeather - High-Resolution Weather Forecasts and Historical Weather...

    • datarade.ai
    .xml, .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CustomWeather (2025). CustomWeather - High-Resolution Weather Forecasts and Historical Weather Forecasts [Dataset]. https://datarade.ai/data-products/high-resolution-weather-forecasts-and-historical-weather-forecasts-customweather
    Explore at:
    .xml, .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    CustomWeather
    Area covered
    Zambia, Niger, Chad, Tanzania, Cuba, British Indian Ocean Territory, Botswana, Western Sahara, Saint Kitts and Nevis, Peru
    Description

    The backbone of CustomWeather's forecasting arm is our proven, high-resolution model, the CW100. The CW100 Model is based on physics, not statistics or airport observations. As a result, it can achieve significantly better accuracy than statistical models, especially for non-airport locations. While other forecast models are designed to forecast the entire atmosphere, the CW100 greatly reduces computational requirements by focusing entirely on conditions near the ground. This reduction of computations allows it to resolve additional physical processes near the ground that are not resolved by other models. It also allows the CW100 to operate at a much higher resolution, typically 100x finer than standard models and other gridded forecasts.

    Detailed Forecasts:
    Features a detailed 48-hour outlook broken into four segments per day: morning, afternoon, evening, and overnight. Each segment provides condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, 6-hr forecasted precip amounts, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Extended Forecasts Days 1-15:
    Features condition descriptions, high/low temperatures, wind speed and direction, humidity, comfort level, UV index, expected and probability of precipitation, and miles of visibility. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Hour-by-Hour Forecasts: Features Hour-by-Hour forecasts. The product is available as 12 hour, 48 hour and 168 hour blocks. Each hourly forecast includes weather descriptions, wind conditions, temperature, dew point, humidity, visibility, rainfall totals, snowfall totals, and precipitation probability. Available for over 85,000 forecast points globally. Updated four times per day.

    Historical Longer Term Forecasts: Includes historical hourly and/or daily forecast data from 2009 until present date. Data will include condition descriptions, high/low temperatures, wind speed and direction, dew point, humidity, comfort level, UV index, probability of precipitation, rainfall and snowfall amounts. Available for over 85,000 forecast points globally. The information is updated four times per day.

    Below are available time periods per each type of forecast from the GFS model and from CustomWeather's proprietary CW100 model:

    GFS: 7-day hourly forecasts from August 2nd 2009; 48-hour to 5-day detailed forecasts from August 4th 2009; 15-day forecasts from October 9th 2008.

    CW100: 7-day hourly forecasts from November 27, 2012; 48-hour detailed forecasts from November 12, 2011; 7-day forecasts from December 6, 2010, 15-day forecasts from August 6, 2012. CW100 is CustomWeather's proprietary model.

    MOS: (Model Output Statistics) for any global location using archive of model and observation data. 0.25 degree resolution. 15-day hourly forecasts from January 1, 2017; 15-day forecasts from April 19, 2017.

  8. Detroit Daily Temperatures with Artificial Warming

    • kaggle.com
    zip
    Updated Sep 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rodrigo Hjort (2019). Detroit Daily Temperatures with Artificial Warming [Dataset]. https://www.kaggle.com/datasets/agajorte/detroit-daily-temperatures-with-artificial-warming/code
    Explore at:
    zip(21251 bytes)Available download formats
    Dataset updated
    Sep 7, 2019
    Authors
    Rodrigo Hjort
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Detroit
    Description

    Context

    Who among us doesn't talk a little about the weather now and then? Will it rain tomorrow and get so cold to shake your chin or will it make that cracking sun? Does global warming exist?

    With this dataset, you can apply machine learning tools to predict the average temperature of Detroit city based on historical data collected over 5 years.

    Content

    The given data set was produced from the Historical Hourly Weather Data [https://www.kaggle.com/selfishgene/historical-hourly-weather-data], which consists of about 5 years of hourly measurements of various weather attributes (eg. temperature, humidity, air pressure) from 30 US and Canadian cities.

    From this rich database, a cutout was made by selecting only the city of Detroit (USA), highlighting only the temperature, converting it to Celsius degrees and keeping only one value for each date (corresponding to the average daytime temperature - from 9am to 5pm).

    In addition, temperature values ​​were artificially and gradually increased by a few Celsius degrees over the available period. This will simulate a small global warming (or is it local?)...

    In summary, the available dataset contains the average daily temperatures (collected during the day), artificially increased by a certain value, for the city of Detroit from October 2012 to November 2017.

    The purpose of this dataset is to apply forecasting models in order to predict the value of the artificially warmed average daily temperature of Detroit.

    See graph in the following image: black dots refer to the actual data and the blue line represents the predictive model (including a confidence area).

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3089313%2Faf9614514242dfb6164a08c013bf6e35%2Fplot-ts2.png?generation=1567827710930876&alt=media" alt="">

    Acknowledgements

    This dataset wouldn't be possible without the previous work in Historical Hourly Weather Data.

    Inspiration

    What are the best forecasting models to address this particular problem? TBATS, ARIMA, Prophet? You tell me!

  9. U.S. Hourly Precipitation Data

    • catalog.data.gov
    • data.globalchange.gov
    • +6more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. Hourly Precipitation Data [Dataset]. https://catalog.data.gov/dataset/u-s-hourly-precipitation-data2
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.

  10. ERA5 hourly data on pressure levels from 1940 to present

    • cds.climate.copernicus.eu
    • cds-test-cci2.copernicus-climate.eu
    grib
    Updated Jul 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on pressure levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.bd0915c6
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 5, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jun 29, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on pressure levels from 1940 to present".

  11. w

    Climate - Hourly Observations

    • api.weather.gc.ca
    Updated Jul 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Climate - Hourly Observations [Dataset]. https://api.weather.gc.ca/collections/climate-hourly
    Explore at:
    html, json, jsonld, application/schema+json, application/geo+jsonAvailable download formats
    Dataset updated
    Jul 20, 2023
    Area covered
    Description

    Canadian hourly climate data are available for public access from the ECCC/MSC's National Climate Archive. These are surface weather stations that produce hourly meteorological observations, taken each hour of the day. Only a subset of the total stations found on Environment and Climate Change Canada’s Historical Climate Data Page is shown due to size limitations.The priorities for inclusion are as follows: stations in cities with populations of 10000+, stations that are Regional Basic Climatological Network status and stations with 30+ years of data.

  12. O

    Weather Data

    • data.open-power-system-data.org
    csv, sqlite
    Updated Sep 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Pfenninger; Iain Staffell (2020). Weather Data [Dataset]. http://doi.org/10.25832/weather_data/2020-09-16
    Explore at:
    csv, sqliteAvailable download formats
    Dataset updated
    Sep 16, 2020
    Dataset provided by
    Open Power System Data
    Authors
    Stefan Pfenninger; Iain Staffell
    Time period covered
    Jan 1, 1980 - Dec 31, 2019
    Variables measured
    utc_timestamp, AT_temperature, BE_temperature, BG_temperature, CH_temperature, CZ_temperature, DE_temperature, DK_temperature, EE_temperature, ES_temperature, and 75 more
    Description

    Hourly geographically aggregated weather data for Europe. This data package contains radiation and temperature data, at hourly resolution, for Europe, aggregated by Renewables.ninja from the NASA MERRA-2 reanalysis. It covers the European countries using a population-weighted mean across all MERRA-2 grid cells within the given country.

  13. Global Historical Climatology Network-hourly (GHCNh), Version 1

    • ncei.noaa.gov
    html
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Menne, Matthew J.; Noone, Simon; Casey, Nancy W.; Dunn, Robert H.; McNeill, Shelley; Kantor, Diana; Thorne, Peter W.; Orcutt, Karen; Cunningham, Sam; Risavi, Nicholas (2024). Global Historical Climatology Network-hourly (GHCNh), Version 1 [Dataset]. http://doi.org/10.25921/jp3d-3v19
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    Menne, Matthew J.; Noone, Simon; Casey, Nancy W.; Dunn, Robert H.; McNeill, Shelley; Kantor, Diana; Thorne, Peter W.; Orcutt, Karen; Cunningham, Sam; Risavi, Nicholas
    Time period covered
    Jan 1, 1750 - Present
    Area covered
    Description

    Global Historical Climatology Network-hourly (GHCNh) is a multisource collection of weather station (meteorological) observations from the late 18th Century to the present from fixed weather stations over land across the globe. It is replacing the Integrated Surface Dataset (ISD) and will be used to generate the Local Climatological Data and Global Summary of the Day datasets. It is constructed to align with GHCN daily. Version 1 contains approximately 110 separate data sources and will be updated daily using the United States Air Force and NOAA Surface Weather Observations data streams. GHCNh v1 contains the following variables: altimeter; dew_point_temperature; precipitation; pressure_3hr_change; pres_wx_AU1; pres_wx_AU2; pres_wx_AU3; pres_wx_AW1; pres_wx_AW2; pres_wx_AW3; pres_wx_MW1; pres_wx_MW2; pres_wx_MW3; relative_humidity; Remarks; sea_level_pressure; sky_cov_baseht_1; sky_cov_baseht_2; sky_cov_baseht_3; sky_cover_1; sky_cover_2; sky_cover_3; station_level_pressure; dry bulb temperature; visibility; wet_bulb_temperature; wind_direction; wind_gust; wind_speed.

  14. A

    ‘Detroit Daily Temperatures with Artificial Warming’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Oct 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘Detroit Daily Temperatures with Artificial Warming’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-detroit-daily-temperatures-with-artificial-warming-c8ae/6a66bd3d/?iid=000-953&v=presentation
    Explore at:
    Dataset updated
    Oct 5, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Detroit
    Description

    Analysis of ‘Detroit Daily Temperatures with Artificial Warming’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/agajorte/detroit-daily-temperatures-with-artificial-warming on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Who among us doesn't talk a little about the weather now and then? Will it rain tomorrow and get so cold to shake your chin or will it make that cracking sun? Does global warming exist?

    With this dataset, you can apply machine learning tools to predict the average temperature of Detroit city based on historical data collected over 5 years.

    Content

    The given data set was produced from the Historical Hourly Weather Data [https://www.kaggle.com/selfishgene/historical-hourly-weather-data], which consists of about 5 years of hourly measurements of various weather attributes (eg. temperature, humidity, air pressure) from 30 US and Canadian cities.

    From this rich database, a cutout was made by selecting only the city of Detroit (USA), highlighting only the temperature, converting it to Celsius degrees and keeping only one value for each date (corresponding to the average daytime temperature - from 9am to 5pm).

    In addition, temperature values ​​were artificially and gradually increased by a few Celsius degrees over the available period. This will simulate a small global warming (or is it local?)...

    In summary, the available dataset contains the average daily temperatures (collected during the day), artificially increased by a certain value, for the city of Detroit from October 2012 to November 2017.

    The purpose of this dataset is to apply forecasting models in order to predict the value of the artificially warmed average daily temperature of Detroit.

    See graph in the following image: black dots refer to the actual data and the blue line represents the predictive model (including a confidence area).

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3089313%2Faf9614514242dfb6164a08c013bf6e35%2Fplot-ts2.png?generation=1567827710930876&alt=media" alt="">

    Acknowledgements

    This dataset wouldn't be possible without the previous work in Historical Hourly Weather Data.

    Inspiration

    What are the best forecasting models to address this particular problem? TBATS, ARIMA, Prophet? You tell me!

    --- Original source retains full ownership of the source dataset ---

  15. e

    Data from: Hourly climate data: Meterologic Measurements at Cedar Creek...

    • portal.edirepository.org
    • search.dataone.org
    txt
    Updated Aug 15, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Seeley (2017). Hourly climate data: Meterologic Measurements at Cedar Creek Natural History Area [Dataset]. http://doi.org/10.6073/pasta/d49d495d790e915f4817c076f50786ac
    Explore at:
    txt(220150 rows)Available download formats
    Dataset updated
    Aug 15, 2017
    Dataset provided by
    EDI
    Authors
    Mark Seeley
    Time period covered
    1987 - 2015
    Area covered
    Variables measured
    rh, Date, hour, airt_c, precip_mm, soilt3_c_1m, winddir_deg, windspeed_ms, soilt1_c_10cm, soilt2_c_50cm, and 4 more
    Description

    Meteorological measurements include air temperature, precipitation, wind speed and direction, soil temperature, and relative humidity. These measurements are taken on an hourly basis.

  16. u

    NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive

    • data.ucar.edu
    • rda-web-prod.ucar.edu
    • +3more
    grib
    Updated Jul 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce (2025). NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive [Dataset]. http://doi.org/10.5065/D65D8PWK
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce
    Time period covered
    Jan 15, 2015 - Jul 18, 2025
    Area covered
    Earth
    Description

    The NCEP operational Global Forecast System analysis and forecast grids are on a 0.25 by 0.25 global latitude longitude grid. Grids include analysis and forecast time steps at a 3 hourly interval from 0 to 240, and a 12 hourly interval from 240 to 384. Model forecast runs occur at 00, 06, 12, and 18 UTC daily. For real-time data access please use the NCEP data server [http://www.nco.ncep.noaa.gov/pmb/products/gfs/]. NOTE: This dataset now has a direct, continuously updating copy located on AWS (https://noaa-gfs-bdp-pds.s3.amazonaws.com/index.html [https://noaa-gfs-bdp-pds.s3.amazonaws.com/index.html]). Therefore, the RDA will stop updating this dataset in early 2025

  17. Surface Weather Observations Hourly

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +1more
    Updated May 2, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (NCEI) (2013). Surface Weather Observations Hourly [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01106
    Explore at:
    Dataset updated
    May 2, 2013
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    Description

    Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the aviation boom in the late 1920s-early 1930s, and continue through Automated Surface Observing Stations (ASOS) today. Files scanned from original manuscript records of raw meteorological data collected by first and second order stations located in the U.S., U.S. Pacific Islands, U.S. Virgin Islands, Puerto Rico, and by military weather stations located worldwide. The vast majority of records are available online, but some records are still only available in the physical format only.

  18. Casement Hourly Data - Dataset - data.gov.ie

    • data.gov.ie
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2019). Casement Hourly Data - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/casement-hourly-data
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    data.gov.ie
    Description

    This table contains hourly elements for the last 30 years measured at our synoptic station in Casement, Co Dublin. The file is updated monthly. Values for each hour may include (depending on the station): Precipitation Amount (mm); Air Temperature (°C); Wet Bulb Air Temperature (°C); Dew Point Air Temperature (°C); Vapour Pressure (hpa); Relative Humidity (%); Mean Sea Level Pressure (hPa); Mean Hourly Wind Speed (kt); Predominant Hourly wind Direction (kt); Synop Code Present Weather; Synop Code Past Weather; Sunshine duration (hours); Visibility (m); Cloud Ceiling Height (100s feet); Cloud Amount (octa).

  19. Quality Controlled Local Climatological Data (QCLCD) Publication

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Oct 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). Quality Controlled Local Climatological Data (QCLCD) Publication [Dataset]. https://catalog.data.gov/dataset/quality-controlled-local-climatological-data-qclcd-publication3
    Explore at:
    Dataset updated
    Oct 11, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    Quality Controlled Local Climatological Data (QCLCD) contains summaries from major airport weather stations that include a daily account of temperature extremes, degree days, precipitation amounts and winds. Also included are the hourly precipitation amounts and abbreviated 3-hourly weather observations. The source data is global hourly (DSI 3505) which includes a number of quality control checks. The local climatological data annual file is produced from the National Weather Service (NWS) first and second order stations. The monthly summaries include maximum, minimum, and average temperature, temperature departure from normal, dew point temperature, average station pressure, ceiling, visibility, weather type, wet bulb temperature, relative humidity, degree days (heating and cooling), daily precipitation, average wind speed, fastest wind speed/direction, sky cover, and occurrences of sunshine, snowfall and snow depth. The annual summary with comparative data contains monthly and annual averages of the above basic climatological data in the meteorological data for the current year section, a table of the normals, means, and extremes of these same data, and sequential table of monthly and annual values of average temperature, total precipitation, total snowfall, and total degree days. Also included is a station location table showing in detail a history of, and relative information about, changes in the locations and exposure of instruments.

  20. c

    Historic Weather - Brazil (Grid 22km, hourly)

    • carto.com
    Updated Feb 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Weather Source (2021). Historic Weather - Brazil (Grid 22km, hourly) [Dataset]. https://carto.com/spatial-data-catalog/browser/dataset/ws_historic_15c8fcca/
    Explore at:
    Dataset updated
    Feb 10, 2021
    Dataset authored and provided by
    Weather Source
    Area covered
    Brazil
    Variables measured
    Humidity, Pressure, Snowfall, Wind Speed, Cloud Cover, Temperature, Precipitation, Wind Direction, Solar Radiation
    Description

    Past weather data from the year 2000 to present

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Saudi Arabia Hourly Climate Integrated Surface Data [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-hourly-weather-data/

Saudi Arabia Hourly Climate Integrated Surface Data

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 15, 2024
Area covered
Saudi Arabia
Description

Saudi Arabia hourly climate integrated surface data with the below data observations, WindSky conditionVisibilityAir temperatureDewSea level pressureNote: The dataset will contain the last 5 years hourly data, however, check the attachments section in this dataset if you need historical data.

Search
Clear search
Close search
Google apps
Main menu