100+ datasets found
  1. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  2. House Price Prediction Dataset

    • kaggle.com
    zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zafar (2024). House Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
    Explore at:
    zip(29372 bytes)Available download formats
    Dataset updated
    Sep 21, 2024
    Authors
    Zafar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    House Price Prediction Dataset.

    The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.

    1. Dataset Features

    The dataset is designed to capture essential attributes for predicting house prices, including:

    Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.

    2. Feature Distributions

    Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.

    3. Correlation Between Features

    A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.

    4. Potential Use Cases

    The dataset is well-suited for various machine learning and data analysis applications, including:

    House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.

    5. Limitations and ...

  3. Forecast house price growth in the UK 2025-2029

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast house price growth in the UK 2025-2029 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    After a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.

  4. Median sale price of existing homes sold in the U.S. 1990-2024 with forecast...

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median sale price of existing homes sold in the U.S. 1990-2024 with forecast for 2027 [Dataset]. https://www.statista.com/statistics/272776/median-price-of-existing-homes-in-the-united-states-from-2011/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. housing market continues to evolve, with the median price for existing homes forecast to fall to ******* U.S. dollars by 2027. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately ****** U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding ****** U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with a modest price increase of *** percent in 2024. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in 2025, with Rhode Island and West Virginia leading the packby home appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.

  5. Residential Real Estate Market Size, Trends, 2030 Share

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Residential Real Estate Market Size, Trends, 2030 Share [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums, and Landed Houses & Villas), by Price Band (Affordable, Mid-Market, and Luxury/Super-prime), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (North America, South America, Europe, Asia-Pacific, and Middle East & Africa). The Market Forecasts are Provided in Terms of Value (USD).

  6. Prime property prices growth forecast in the UK 2025-2029

    • statista.com
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prime property prices growth forecast in the UK 2025-2029 [Dataset]. https://www.statista.com/statistics/323606/uk-wide-property-price-growth/
    Explore at:
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    According to the forecast, house prices in the UK prime property market are expected to increase by almost **** percent by 2029. Growth is expected to accelerate over the five-year period, with 2025 expecting the lowest increase and 2029, the highest.

  7. Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (Australia, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/residential-real-estate-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    France, Mexico, North America, Japan, Brazil, Europe, United States, Germany, United Kingdom, Canada
    Description

    Snapshot img

    Residential Real Estate Market Size 2025-2029

    The residential real estate market size is valued to increase USD 485.2 billion, at a CAGR of 4.5% from 2024 to 2029. Growing residential sector globally will drive the residential real estate market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 55% growth during the forecast period.
    By Mode Of Booking - Sales segment was valued at USD 926.50 billion in 2023
    By Type - Apartments and condominiums segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 41.01 billion
    Market Future Opportunities: USD 485.20 billion
    CAGR : 4.5%
    APAC: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving sector that continues to shape the global economy. With increasing marketing initiatives and the growing residential sector globally, the market presents significant opportunities for growth. However, regulatory uncertainty looms large, posing challenges for stakeholders. According to recent reports, technology adoption in residential real estate has surged, with virtual tours and digital listings becoming increasingly popular. In fact, over 40% of homebuyers in the US prefer virtual property viewings. Core technologies such as artificial intelligence and blockchain are revolutionizing the industry, offering enhanced customer experiences and streamlined processes.
    Despite these advancements, regulatory compliance remains a major concern, with varying regulations across regions adding complexity to market operations. The market is a complex and intriguing space, with ongoing activities and evolving patterns shaping its future trajectory.
    

    What will be the Size of the Residential Real Estate Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Residential Real Estate Market Segmented and what are the key trends of market segmentation?

    The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Mode Of Booking
    
      Sales
      Rental or lease
    
    
    Type
    
      Apartments and condominiums
      Landed houses and villas
    
    
    Location
    
      Urban
      Suburban
      Rural
    
    
    End-user
    
      Mid-range housing
      Affordable housing
      Luxury housing
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Mode Of Booking Insights

    The sales segment is estimated to witness significant growth during the forecast period.

    Request Free Sample

    The Sales segment was valued at USD 926.50 billion in 2019 and showed a gradual increase during the forecast period.

    Request Free Sample

    Regional Analysis

    APAC is estimated to contribute 55% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    See How Residential Real Estate Market Demand is Rising in APAC Request Free Sample

    The market in the Asia Pacific (APAC) region holds a significant share and is projected to lead the global market growth. Factors fueling this expansion include the region's rapid urbanization and increasing consumer spending power. Notably, residential and commercial projects in countries like India and China are experiencing robust development. The residential real estate sector in China plays a pivotal role in the economy and serves as a major growth driver for the market.

    With these trends continuing, the APAC the market is poised for continued expansion during the forecast period.

    Market Dynamics

    Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    In the Residential Real Estate Market, understanding the impact property tax rates home values and effect interest rates mortgage affordability is essential for buyers and investors. Key factors affecting home price appreciation and factors influencing housing affordability shape market trends, while the importance property due diligence process and requirements environmental site assessment ensure informed decisions. Investors benefit from methods calculating rental property roi, process home equity loan application, and benefits real estate portfolio diversification. Tools like property management software efficiency and techniques effective property marketing help tackle challenges managing rental properties. Additionally, strategies successf

  8. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  9. E

    United States Real Estate Market Growth Analysis - Forecast Trends and...

    • expertmarketresearch.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claight Corporation (Expert Market Research), United States Real Estate Market Growth Analysis - Forecast Trends and Outlook (2025-2034) [Dataset]. https://www.expertmarketresearch.com/reports/united-states-real-estate-market
    Explore at:
    pdf, excel, csv, pptAvailable download formats
    Dataset authored and provided by
    Claight Corporation (Expert Market Research)
    License

    https://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy

    Time period covered
    2025 - 2034
    Area covered
    United States
    Variables measured
    CAGR, Forecast Market Value, Historical Market Value
    Measurement technique
    Secondary market research, data modeling, expert interviews
    Dataset funded by
    Claight Corporation (Expert Market Research)
    Description

    The United States real estate market was valued at USD 3.43 Trillion in 2024. The industry is expected to grow at a CAGR of 2.80% during the forecast period of 2025-2034 to reach a value of USD 4.52 Trillion by 2034. The market growth is mainly driven by the rising corporate investment, particularly in addressing the nation’s affordable housing shortage.

    Major corporations are actively investing to integrate housing stability with social responsibility, supporting both new construction and the preservation of existing homes. In September 2024, UnitedHealth Group surpassed USD 1 billion in investments for affordable and mixed-income housing through direct capital and tax credits. These projects span 31 states and have delivered over 25,000 homes, simultaneously improved community health and providing secure housing for low- and moderate-income households.

    Such corporate involvements are reshaping trends in United States real estate market by expanding the supply of affordable housing, reducing barriers for renters and homeowners, and stimulating development in high-demand urban and suburban areas. By aligning financial resources with strategic planning, corporations are enabling scalable solutions that meet social and economic objectives while enhancing overall market efficiency.

  10. Housing Price & Real Estate - 2023

    • kaggle.com
    zip
    Updated Oct 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reena Pinto (2023). Housing Price & Real Estate - 2023 [Dataset]. https://www.kaggle.com/datasets/reenapinto/housing-price-and-real-estate-2023
    Explore at:
    zip(260191 bytes)Available download formats
    Dataset updated
    Oct 8, 2023
    Authors
    Reena Pinto
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A housing market prediction that many experts agree on is that it will be a seller’s market. Home prices are expected to rise for some time due to increased demand and limited supply. Millennials are at the age to start investing in the real estate market for the first time. Hence, the demand for residential and commercial projects is rising with every passing day. The future of real estate will witness a rise in demand and limited supply, resulting in it being a seller’s market.

    Your 1 upvote encourages me to upload more trending datasets. Thanks for your support.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F8355503%2F20827a3fb7a1b4bc6e3227006563692f%2FCapture.PNG?generation=1696752722617297&alt=media" alt="">

    If you liked the dataset, please upvote to upload more trending datasets. Thanks for your support.

  11. New York Housing Market

    • kaggle.com
    Updated Jan 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2024). New York Housing Market [Dataset]. http://doi.org/10.34740/kaggle/dsv/7351086
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Nidula Elgiriyewithana ⚡
    Area covered
    New York
    Description

    Description:

    This dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.

    DOI

    Key Features:

    • BROKERTITLE: Title of the broker
    • TYPE: Type of the house
    • PRICE: Price of the house
    • BEDS: Number of bedrooms
    • BATH: Number of bathrooms
    • PROPERTYSQFT: Square footage of the property
    • ADDRESS: Full address of the house
    • STATE: State of the house
    • MAIN_ADDRESS: Main address information
    • ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
    • LOCALITY: Locality information
    • SUBLOCALITY: Sublocality information
    • STREET_NAME: Street name
    • LONG_NAME: Long name
    • FORMATTED_ADDRESS: Formatted address
    • LATITUDE: Latitude coordinate of the house
    • LONGITUDE: Longitude coordinate of the house

    Potential Use Cases:

    • Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
    • Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
    • Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
    • Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
    • Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.

    If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you

  12. U

    United States House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 3.3% YoY in Sep 2025, following an increase of 4.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2025, with an average growth rate of -12.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  13. US Luxury Residential Real Estate Market Size, Share & Growth Trends - 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Luxury Residential Real Estate Market Size, Share & Growth Trends - 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-luxury-residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 8, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    United States Luxury Residential Real Estate Market Report is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Business Model (Sales and Rental), by Mode of Sale (Primary (New-Build) and Secondary (Existing-Home Resale)), and by Region (Northeast, Midwest, Southeast, West and Southwest). The Market Forecasts are Provided in Terms of Value (USD).

  14. China Residential Real Estate Market Size, Share, Trends Analysis - 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). China Residential Real Estate Market Size, Share, Trends Analysis - 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market-in-china
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    China
    Description

    The China Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums and Villas & Landed Houses), Price Band (Affordable, Mid-Market and Luxury), Mode of Sale (Primary and Secondary), Business Model (Sales and Rental) and Key Cities (Shenzhen, Beijing, Shanghai, Hangzhou, Guangzhou, and Other Key Cities). The Market Forecasts are Provided in Terms of Value (USD).

  15. Average house price in Canada 2018-2024, with a forecast by 2026

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price in Canada 2018-2024, with a forecast by 2026 [Dataset]. https://www.statista.com/statistics/604228/median-house-prices-canada/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    The average Canadian house price declined slightly in 2023, after four years of consecutive growth. The average house price stood at ******* Canadian dollars in 2023 and was forecast to reach ******* Canadian dollars by 2026. Home sales on the rise The number of housing units sold is also set to increase over the two-year period. From ******* units sold, the annual number of home sales in the country is expected to rise to ******* in 2025. British Columbia and Ontario have traditionally been housing markets with prices above the Canadian average, and both are set to witness an increase in sales in 2025. How did Canadians feel about the future development of house prices? When it comes to consumer confidence in the performance of the real estate market in the next six months, Canadian consumers in 2024 mostly expected that the market would go up. A slightly lower share of the respondents believed real estate prices would remain the same.

  16. Germany Residential Real Estate Market Size and Trends Analysis 2025 - 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Germany Residential Real Estate Market Size and Trends Analysis 2025 - 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market-in-germany
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 8, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Germany
    Description

    The Germany Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums and Villas & Landed Houses), Price Band (Affordable, Mid-Market and Luxury), Business Model (Sales and Rental), Mode of Sale (Primary and Secondary), and Key Cities (Berlin, Hamburg, Munich, Cologne, Frankfurt, Dusseldorf, Leipzig and Rest of Germany). The Market Forecasts are Provided in Terms of Value (USD).

  17. US Office Real Estate Market Size, Competitive Landscape 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Office Real Estate Market Size, Competitive Landscape 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-office-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The US Office Real Estate Market Report is Segmented by Building Grade (Grade A, Grade B, and More), by Transaction Type (Rental and Sales), by End Use (Information Technology (IT & ITES), BFSI (Banking, Financial Services and Insurance), and More) and by States (Texas, California, Florida and More). The Report Offers Market Size and Forecasts in Value (USD) for all the Above Segments.

  18. US Residential Real Estate Market Size & 2030 Share

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Residential Real Estate Market Size & 2030 Share [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market-in-usa
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The United States Residential Real Estate Market is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Price Band (Affordable, Mid-Market and Luxury), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (Northeast, Midwest, Southeast, West and Southwest). The Market Forecasts are Provided in Terms of Value (USD)

  19. UK Residential Real Estate Market Size, Trends & Forecast Report 2025 - 2030...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). UK Residential Real Estate Market Size, Trends & Forecast Report 2025 - 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market-in-united-kingdom
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United Kingdom
    Description

    United Kingdom Residential Real Estate Market is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Price Band (Affordable, Mid-Market and Luxury), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (England, Scotland, Wales and Northern Ireland). The Market Forecasts are Provided in Terms of Value (USD)

  20. R

    Residential Real Estate Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Residential Real Estate Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/residential-real-estate-industry-17218
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming global residential real estate market! Our in-depth analysis reveals a $11.14B market in 2025, projected to grow at a 6.07% CAGR through 2033. Learn about key drivers, trends, regional insights, and leading companies shaping this dynamic industry. Get the data-driven insights you need to succeed. Recent developments include: December 2023: The Ashwin Sheth group is planning to expand its residential and commercial portfolio in the MMR (Mumbai Metropolitan Area) region, India., November 2023: Tata Realty and Infrastructure, a wholly-owned subsidiary of Tata Sons, plans to grow its business with more than 50 projects in major cities in India, Sri Lanka and the Maldives. The projects have a development potential of more than 51 million square feet.. Key drivers for this market are: Rapid urbanization, Government initiatives. Potential restraints include: High property prices, Regulatory challenges. Notable trends are: Increased urbanization and homeownership by elderly.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
Organization logo

Housing Prices Dataset

Housing Prices Prediction - Regression Problem

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(4740 bytes)Available download formats
Dataset updated
Jan 12, 2022
Authors
M Yasser H
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

Description:

A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

Acknowledgement:

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Objective:

  • Understand the Dataset & cleanup (if required).
  • Build Regression models to predict the sales w.r.t a single & multiple feature.
  • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
Search
Clear search
Close search
Google apps
Main menu