100+ datasets found
  1. UK House Price Index: data downloads January 2024

    • gov.uk
    Updated Mar 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2024). UK House Price Index: data downloads January 2024 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-january-2024
    Explore at:
    Dataset updated
    Mar 20, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_20_03_24" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  2. 🏡 Global Housing Market Analysis (2015-2024)

    • kaggle.com
    zip
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atharva Soundankar (2025). 🏡 Global Housing Market Analysis (2015-2024) [Dataset]. https://www.kaggle.com/datasets/atharvasoundankar/global-housing-market-analysis-2015-2024
    Explore at:
    zip(18363 bytes)Available download formats
    Dataset updated
    Mar 18, 2025
    Authors
    Atharva Soundankar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.

    📑 Column Descriptions

    Column NameDescription
    CountryThe country where the housing market data is recorded 🌍
    YearThe year of observation 📅
    Average House Price ($)The average price of houses in USD 💰
    Median Rental Price ($)The median monthly rent for properties in USD 🏠
    Mortgage Interest Rate (%)The average mortgage interest rate percentage 📉
    Household Income ($)The average annual household income in USD 🏡
    Population Growth (%)The percentage increase in population over the year 👥
    Urbanization Rate (%)Percentage of the population living in urban areas 🏙️
    Homeownership Rate (%)The percentage of people who own their homes 🔑
    GDP Growth Rate (%)The annual GDP growth percentage 📈
    Unemployment Rate (%)The percentage of unemployed individuals in the labor force 💼
  3. Average sales price of new homes sold in the U.S. 1965-2024

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average sales price of new homes sold in the U.S. 1965-2024 [Dataset]. https://www.statista.com/statistics/240991/average-sales-prices-of-new-homes-sold-in-the-us/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.

  4. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - Sep 30, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 435.40 points in September from 435.60 points in August of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. EMF house price index in Europe 2025, by country

    • statista.com
    Updated Nov 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). EMF house price index in Europe 2025, by country [Dataset]. https://www.statista.com/statistics/614963/emf-house-price-index-europe-by-country/
    Explore at:
    Dataset updated
    Nov 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    Hungary, Portugal, Czechia, and Poland were the countries in Europe where house prices increased the most between 2015 and 2024. The EMF house price index for all four countries measured more than *** index points, indicating that home prices more than doubled since 2015 — the base year. Property prices are tightly connected with the supply of new homes. France, Poland, and Denmark are some of the countries with the most dwellings completed per 1,000 citizens in Europe.

  6. U.S. housing: Case Shiller National Home Price Index 2000-2024

    • statista.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. housing: Case Shiller National Home Price Index 2000-2024 [Dataset]. https://www.statista.com/statistics/199360/case-shiller-national-home-price-index-for-the-us-since-2000/
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The year-end value of the S&P Case Shiller National Home Price Index amounted to 321.45 in 2024. The index value was equal to 100 as of January 2000, so if the index value is equal to 130 in a given year, for example, it means that the house prices increased by 30 percent since 2000. S&P/Case Shiller U.S. home indices – additional informationThe S&P Case Shiller National Home Price Index is calculated on a monthly basis and is based on the prices of single-family homes in nine U.S. Census divisions: New England, Middle Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South Central, Mountain and Pacific. The index is the leading indicator of the American housing market and one of the indicators of the state of the broader economy. The index illustrates the trend of home prices and can be helpful during house purchase decisions. When house prices are rising, a house buyer might want to speed up the house purchase decision as the transaction costs can be much higher in the future. The S&P Case Shiller National Home Price Index has been on the rise since 2011.The S&P Case Shiller National Home Price Index is one of the indices included in the S&P/Case-Shiller Home Price Index Series. Other indices are the S&P/Case Shiller 20-City Composite Home Price Index, the S&P/Case Shiller 10-City Composite Home Price Index and twenty city composite indices.

  7. UK House Price Index: monthly price statistics

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). UK House Price Index: monthly price statistics [Dataset]. https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/ukhousepriceindexmonthlypricestatistics
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Summary of UK House Price Index (HPI) price statistics covering England, Scotland, Wales and Northern Ireland. Full UK HPI data are available on GOV.UK.

  8. House Price Prediction Dataset Vietnam - 2024

    • kaggle.com
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nguyen Tien Nhan (2024). House Price Prediction Dataset Vietnam - 2024 [Dataset]. https://www.kaggle.com/datasets/nguyentiennhan/vietnam-housing-dataset-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 22, 2024
    Dataset provided by
    Kaggle
    Authors
    Nguyen Tien Nhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Việt Nam
    Description

    Dataset Description: This dataset contains information about various housing properties in Vietnam. It includes detailed attributes of each property, such as its location, physical characteristics, and legal and furnishing status, along with the price. This dataset can be useful for real estate analysis, price prediction models, and market trend analysis.

    Data Collection: The data was crawled from batdongsan.vn

    Column Descriptions: - Address: The complete address of the property, including details such as the project name, street, ward, district, and city. - Area: The total area of the property, measured in square meters. - Frontage: The width of the front side of the property, measured in meters. - Access Road: The width of the road providing access to the property, measured in meters. - House Direction: The cardinal direction the front of the house is facing (e.g., East, West, North, South). - Balcony Direction: The cardinal direction the balcony is facing. - Floors: The total number of floors in the property. - Bedrooms: The number of bedrooms in the property. - Bathrooms: The number of bathrooms in the property. - Legal Status: Indicates the legal status of the property, such as whether it has a certificate of ownership or is under a sale contract. - Furniture State: Indicates the state of furnishing in the property, such as fully furnished, partially furnished, or unfurnished. - Price: The price of the property, represented in billions of Vietnamese Dong (VND).

  9. Real Estate Data London 2024

    • kaggle.com
    zip
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). Real Estate Data London 2024 [Dataset]. https://www.kaggle.com/datasets/kanchana1990/real-estate-data-london-2024
    Explore at:
    zip(572823 bytes)Available download formats
    Dataset updated
    Nov 6, 2024
    Authors
    Kanchana1990
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    London
    Description

    Dataset Overview

    This dataset provides a snapshot of properties listed for sale in London, sourced from the Rightmove website. It includes various property details such as the number of bedrooms, bathrooms, type of property, and price. The dataset is designed for educational purposes, offering insights into real estate trends and allowing data science enthusiasts to apply their skills in the context of property analysis.

    Data Science Applications

    This dataset is a valuable resource for students and researchers to practice various data science and analytics techniques. Potential applications include: - Exploratory Data Analysis (EDA): Understanding property distribution across London, price trends, and property types. - Price Prediction Models: Building machine learning models to estimate property prices based on available features. - Real Estate Trend Analysis: Analyzing trends in London’s real estate market, such as price fluctuations or differences in property features by neighborhood. - Text Analysis: Using the property descriptions for natural language processing (NLP) to extract keywords or sentiment related to property value or appeal.

    Column Descriptions

    • addedOn: Date when the property listing was added or updated on the website.
    • title: Brief listing title describing the property, typically including the number of bedrooms and the location.
    • descriptionHtml: Detailed description of the property, including features and potentially some promotional language.
    • propertyType: Type of property, such as House, Terraced, or Detached.
    • sizeSqFeetMax: Maximum size of the property in square feet, if provided.
    • bedrooms: Number of bedrooms in the property.
    • bathrooms: Number of bathrooms in the property.
    • listingUpdateReason: Reason for updating the listing (e.g., new listing, price reduction).
    • price: Price at which the property is listed for sale.

    Ethically Mined Data

    This dataset was ethically mined from a publicly accessible website using the APIFY API. All data in this dataset reflects publicly available information about properties listed for sale, with no Personally Identifiable Information (PII) included. The dataset does not include any data that could infringe on individual privacy.

    Acknowledgements

    • Data Source: Rightmove for providing publicly accessible real estate listings.
    • Image Credit: Photo by Douglas Sheppard on Unsplash.
  10. M

    Mexico House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). Mexico House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/mexico/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    Mexico
    Description

    Key information about House Prices Growth

    • Mexico house prices grew 8.9% YoY in Sep 2025, following an increase of 8.7% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 2006 to Sep 2025, with an average growth rate of 10.2%.
    • House price data reached an all-time high of 11.7% in Mar 2023 and a record low of 2.2% in Jun 2010.

    CEIC calculates House Price Growth from quarterly House Price Index. Federal Mortgage Society provides House Price Index with base 2017=100.

  11. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  12. T

    Hong Kong House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Hong Kong House Price Index [Dataset]. https://tradingeconomics.com/hong-kong/housing-index
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1994 - Nov 23, 2025
    Area covered
    Hong Kong
    Description

    Housing Index in Hong Kong increased to 143.46 points in November 23 from 142.49 points in the previous week. This dataset provides - Hong Kong House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. T

    Germany House Price Index

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). Germany House Price Index [Dataset]. https://tradingeconomics.com/germany/housing-index
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 31, 2005 - Oct 31, 2025
    Area covered
    Germany
    Description

    Housing Index in Germany increased to 220.43 points in October from 219.91 points in September of 2025. This dataset provides the latest reported value for - Germany House Price Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  14. F

    All-Transactions House Price Index for Cuyahoga County, OH

    • fred.stlouisfed.org
    json
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Cuyahoga County, OH [Dataset]. https://fred.stlouisfed.org/series/ATNHPIUS39035A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Cuyahoga County, Ohio
    Description

    Graph and download economic data for All-Transactions House Price Index for Cuyahoga County, OH (ATNHPIUS39035A) from 1975 to 2024 about Cuyahoga County, OH; Cleveland; OH; HPI; housing; price index; indexes; price; and USA.

  15. Typical price of single-family homes in the U.S. 2020-2024, by state

    • statista.com
    Updated Apr 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Typical price of single-family homes in the U.S. 2020-2024, by state [Dataset]. https://www.statista.com/statistics/1041708/typical-home-value-single-family-homes-usa-by-state/
    Explore at:
    Dataset updated
    Apr 16, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.

  16. Danish Residential Housing Prices 1992-2024

    • kaggle.com
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Frederiksen (2024). Danish Residential Housing Prices 1992-2024 [Dataset]. https://www.kaggle.com/datasets/martinfrederiksen/danish-residential-housing-prices-1992-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Martin Frederiksen
    Description

    Danish residential house prices (1992-2024)

    About the dataset (cleaned data)

    The dataset (parquet file) contains approximately 1,5 million residential household sales from Denmark during the periode from 1992 to 2024. All cleaned data is merged into one parquet file here on Kaggle. Note some cleaning might still be nessesary, see notebook under code.

    Also, added a random sample (100k) of the dataset as a csv file.

    Done in Python version: 2.6.3.

    Raw data

    Raw data and more info is avaible on Github repositary: https://github.com/MartinSamFred/Danish-residential-housingPrices-1992-2024.git

    The dataset has been scraped and cleaned (to some extent). Cleaned files are located in: \Housing_data_cleaned \ named DKHousingprices_1 and 2. Saved in parquet format (and saved as two files due to size).

    Cleaning from raw files to above cleaned files is outlined in BoligsalgConcatCleanigGit.ipynb. (done in Python version: 2.6.3)

    Webscraping script: Webscrape_script.ipynb (done in Python version: 2.6.3)

    Provided you want to clean raw files from scratch yourself:

    Uncleaned scraped files (81 in total) are located in \Housing_data_raw \ Housing_data_batch1 and 2. Saved in .csv format and compressed as 7-zip files.

    Additional files added/appended to the Cleaned files are located in \Addtional_data and named DK_inflation_rates, DK_interest_rates, DK_morgage_rates and DK_regions_zip_codes. Saved in .xlsx format.

    Content

    Each row in the dataset contains a residential household sale during the period 1992 - 2024.

    “Cleaned files” columns:

    0 'date': is the transaction date

    1 'quarter': is the quarter based on a standard calendar year

    2 'house_id': unique house id (could be dropped)

    3 'house_type': can be 'Villa', 'Farm', 'Summerhouse', 'Apartment', 'Townhouse'

    4 'sales_type': can be 'regular_sale', 'family_sale', 'other_sale', 'auction', '-' (“-“ could be dropped)

    5 'year_build': range 1000 to 2024 (could be narrowed more)

    6 'purchase_price': is purchase price in DKK

    7 '%_change_between_offer_and_purchase': could differ negatively, be zero or positive

    8 'no_rooms': number of rooms

    9 'sqm': number of square meters

    10 'sqm_price': 'purchase_price' divided by 'sqm_price'

    11 'address': is the address

    12 'zip_code': is the zip code

    13 'city': is the city

    14 'area': 'East & mid jutland', 'North jutland', 'Other islands', 'Capital, Copenhagen', 'South jutland', 'North Zealand', 'Fyn & islands', 'Bornholm'

    15 'region': 'Jutland', 'Zealand', 'Fyn & islands', 'Bornholm'

    16 'nom_interest_rate%': Danish nominal interest rate show pr. quarter however actual rate is not converted from annualized to quarterly

    17 'dk_ann_infl_rate%': Danish annual inflation rate show pr. quarter however actual rate is not converted from annualized to quarterly

    18 'yield_on_mortgage_credit_bonds%': 30 year mortgage bond rate (without spread)

    Uses

    Various (statistical) analysis, visualisation and I assume machine learning as well.

    Practice exercises etc.

    Uncleaned scraped files are great to practice cleaning, especially string cleaning. I’m not an expect as seen in the coding ;-).

    Disclaimer

    The data and information in the data set provided here are intended to be used primarily for educational purposes only. I do not own any data, and all rights are reserved to the respective owners as outlined in “Acknowledgements/sources”. The accuracy of the dataset is not guaranteed accordingly any analysis and/or conclusions is solely at the user's own responsibly and accountability.

    Acknowledgements/sources

    All data is publicly available on:

    Boliga: https://www.boliga.dk/

    Finans Danmark: https://finansdanmark.dk/

    Danmarks Statistik: https://www.dst.dk/da

    Statistikbanken: https://statistikbanken.dk/statbank5a/default.asp?w=2560

    Macrotrends: https://www.macrotrends.net/

    PostNord: https://www.postnord.dk/

    World Data: https://www.worlddata.info/

    Dataset picture / cover photo: Nick Karvounis (https://unsplash.com/)

    Have fun… :-)

  17. Houston housing market 2024

    • kaggle.com
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natasha Lekh (2024). Houston housing market 2024 [Dataset]. https://www.kaggle.com/datasets/datadetective08/houston-housing-market-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    Kaggle
    Authors
    Natasha Lekh
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Houston
    Description

    This dataset contains detailed information on current real estate listings in Houston, Texas, sourced from Zillow, and provides a comprehensive snapshot of the Houston housing market as of 5th June 2024.

    The data was extracted from Zillow using a combination of two scraping tools from Apify: Zillow ZIP Code Scraper 🔗 https://apify.com/maxcopell/zillow-zip-search and Zillow Details Scraper 🔗 https://apify.com/maxcopell/zillow-detail-scraper.

    The data includes key details for each listing for sale, such as:

    • 📍 Complete address, city, state, zip code, latitude/longitude coordinates
    • 🏡 Property type (single family, condo, apartment, etc.)
    • 💵 Listing price
    • 🛏️ Number of bedrooms and bathrooms
    • 📐 Square footage
    • 🌳 Lot size in acres (if applicable)
    • 🏗️ Year of construction
    • 🏘️ HOA fees (if applicable)
    • 💸 Property tax history
    • ✨ Amenities such as rooftop terraces, concierge services, etc.
    • 🏫 Nearby schools and their GreatSchools ratings
    • 🧑‍💼 Property and listing agents, brokers, and their contact information
    • 🕒 Availability for tours and open houses
    • 🖼️ Links to listing photos

    With 25,900 current listings, this dataset is ideal for in-depth analysis of the Houston housing market and the Houston real estate market. Potential use cases include:

    • Comparing listing prices, price per square foot across different neighborhoods, property types
    • Mapping listings to visualize the spatial distribution of for-sale inventory
    • Analyzing the age of for-sale housing stock from year-built data
    • Evaluating typical HOA fees, and property taxes for listings
    • Identifying listings with sought-after amenities
    • Assessing school quality near listings from GreatSchools ratings
    • Contacting listing agents programmatically using the included agent info

    Whether you're a real estate professional, market researcher, data scientist, or just curious about the Houston housing market, this dataset provides a wealth of information to explore. You can start investigating Houston real estate today.

  18. Texas Real Estate Trends 2024: 500 Listings 🏠

    • kaggle.com
    zip
    Updated Feb 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). Texas Real Estate Trends 2024: 500 Listings 🏠 [Dataset]. https://www.kaggle.com/datasets/kanchana1990/texas-real-estate-trends-2024-500-listings
    Explore at:
    zip(147784 bytes)Available download formats
    Dataset updated
    Feb 10, 2024
    Authors
    Kanchana1990
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    Texas
    Description

    Overview

    This dataset provides a comprehensive snapshot of the Texas real estate market as of 2024, featuring a curated selection of 500 property listings. It encompasses a wide array of properties, reflecting the diverse real estate landscape across Texas. This dataset serves as a foundational tool for understanding market dynamics, property valuations, and regional housing trends within the state.

    Data Science Application of Dataset

    Given its breadth and depth, this dataset is poised to facilitate a multitude of data science applications. Researchers and analysts can leverage this dataset for exploratory data analysis (EDA) to identify patterns, trends, and anomalies within the Texas real estate market. It is particularly suited for regression analyses to predict property prices based on various features, classification tasks to categorize properties into different market segments, and geographical data analysis to understand regional market dynamics. Despite the dataset's modest size, it offers a rich source for machine learning models aimed at providing insights into price determinants and market trends, ensuring practical applications remain within realistic and achievable bounds.

    Full Column Descriptors

    • url: Web address for the property listing on Realtor.com.
    • status: Current status of the listing, indicating availability.
    • id: Unique identifier for each property listing.
    • listPrice: The asking price for the property.
    • baths: Total number of bathrooms, including partials.
    • baths_full: Number of full bathrooms.
    • baths_full_calc: Calculated number of full bathrooms, for consistency.
    • beds: Number of bedrooms in the property.
    • sqft: Total square footage of the property.
    • stories: Number of levels or floors in the property.
    • sub_type: Specific sub-category of the property, if applicable.
    • text: Descriptive narrative provided for the property listing.
    • type: General category of the property (e.g., single-family, condo).
    • year_built: Year the property was constructed.

    Ethically Mined Publicly Available Data Only

    This dataset has been meticulously compiled, adhering to ethical standards and ensuring all data is sourced from publicly available information. It respects privacy and copyright considerations, utilizing data that is openly accessible and intended for public consumption.

    Acknowledgments

    Gratitude is extended to Realtor.com for serving as an invaluable resource in the compilation of this dataset. The platform's commitment to providing comprehensive and accessible real estate data has significantly contributed to the depth and quality of this dataset.

    Image Acknowledgment

    The dataset thumbnail image is credited to Realtor.com, as featured on their official Facebook page. The image serves as a visual representation of the diverse and dynamic nature of the Texas real estate market, captured in this comprehensive dataset. View Image

  19. Washington D.C. housing market 2024

    • kaggle.com
    zip
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natasha Lekh (2024). Washington D.C. housing market 2024 [Dataset]. https://www.kaggle.com/datasets/datadetective08/washington-d-c-housing-market-2024
    Explore at:
    zip(147382065 bytes)Available download formats
    Dataset updated
    Jun 5, 2024
    Authors
    Natasha Lekh
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Washington
    Description

    These datasets contain comprehensive information on current real estate listings in Washington, D.C., obtained from Zillow, and offer a detailed overview of the Washington, D.C. housing market as of 5th June 2024.

    The data was extracted from Zillow using a combination of two scraping tools from Apify: Zillow ZIP Code Scraper 🔗 https://apify.com/maxcopell/zillow-zip-search and Zillow Details Scraper 🔗 https://apify.com/maxcopell/zillow-detail-scraper.

    The full dataset includes all details for each listing for sale, such as:

    • 📍 Complete address, city, state, zip code, latitude/longitude coordinates
    • 🏡 Property type (single family, condo, apartment, etc.)
    • 💵 Listing price
    • 🛏️ Number of bedrooms and bathrooms
    • 📐 Square footage
    • 🌳 Lot size in acres (if applicable)
    • 🏗️ Year of construction
    • 🏘️ HOA fees (if applicable)
    • 💸 Property tax history
    • ✨ Amenities such as rooftop terraces, concierge services, etc.
    • 🏫 Nearby schools and their GreatSchools ratings
    • 🧑‍💼 Property and listing agents, brokers, and their contact information
    • 🕒 Availability for tours and open houses
    • 🖼️ Links to listing photos

    With over 5,000 current listings, this dataset is perfect for in-depth analysis of the Washington, D.C. housing market and the Washington, D.C. real estate scene. Potential applications include:

    • Comparing listing prices and price per square foot across various neighborhoods and property types
    • Mapping listings to visualize the spatial distribution of available inventory
    • Analyzing the age of available housing stock using year-of-construction data
    • Assessing typical HOA fees and property taxes for listings
    • Identifying listings with desirable amenities
    • Evaluating school quality near listings using GreatSchools ratings
    • Contacting listing agents programmatically using the provided agent information

    Whether you're a real estate professional, market analyst, data scientist, or simply interested in the Washington, D.C., housing market, this dataset offers a wealth of information to explore. You can begin investigating and discovering insights into Washington, D.C. real estate today.

  20. F

    All-Transactions House Price Index for the United States

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for the United States [Dataset]. https://fred.stlouisfed.org/series/USSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
HM Land Registry (2024). UK House Price Index: data downloads January 2024 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-january-2024
Organization logo

UK House Price Index: data downloads January 2024

Explore at:
Dataset updated
Mar 20, 2024
Dataset provided by
GOV.UKhttp://gov.uk/
Authors
HM Land Registry
Area covered
United Kingdom
Description

The UK House Price Index is a National Statistic.

Create your report

Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_20_03_24" class="govuk-link">create your own bespoke reports.

Download the data

Datasets are available as CSV files. Find out about republishing and making use of the data.

Full file

This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

Download the full UK HPI background file:

Individual attributes files

If you are interested in a specific attribute, we have separated them into these CSV files:

Search
Clear search
Close search
Google apps
Main menu