100+ datasets found
  1. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  2. Forecast house price growth in the UK 2025-2029

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast house price growth in the UK 2025-2029 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    After a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.

  3. Housing Prices Regression 🏘️

    • kaggle.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Den_Kuznetz (2024). Housing Prices Regression 🏘️ [Dataset]. https://www.kaggle.com/datasets/denkuznetz/housing-prices-regression
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Den_Kuznetz
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Task Description: Real Estate Price Prediction

    This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.

    The goal is to build a regression model that can predict the Price of a property based on the provided features.

    Dataset Columns:

    ID: A unique identifier for each property.

    Square_Feet: The area of the property in square meters.

    Num_Bedrooms: The number of bedrooms in the property.

    Num_Bathrooms: The number of bathrooms in the property.

    Num_Floors: The number of floors in the property.

    Year_Built: The year the property was built.

    Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).

    Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).

    Garage_Size: The size of the garage in square meters.

    Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).

    Distance_to_Center: The distance from the property to the city center in kilometers.

    Price: The target variable that represents the price of the property. This is the value we aim to predict.

    Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.

  4. US House Price Prediction Dataset

    • kaggle.com
    zip
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ditsa pandey (2023). US House Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/ditsapandey/us-house-price-prediction-dataset
    Explore at:
    zip(18010 bytes)Available download formats
    Dataset updated
    Dec 16, 2023
    Authors
    ditsa pandey
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Dataset

    This dataset was created by ditsa pandey

    Released under ODC Public Domain Dedication and Licence (PDDL)

    Contents

  5. House price change forecast in Spain and Portugal 2023, with a forecast by...

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price change forecast in Spain and Portugal 2023, with a forecast by 2025 [Dataset]. https://www.statista.com/statistics/1165916/residential-real-estate-price-forecast-change-in-spain-and-portugal/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Spain, Portugal
    Description

    House prices in Spain are forecast to fall in 2024, after increasing by *** percent in 2023. Nevertheless, prices are expected to pick up in 2025, with an increase of ***********. The Portuguese housing market, on the other hand, grew by *** percent in 2023, but was forecast to contract in the next two years.

  6. Five-year forecast of house price growth in the UK 2025-2029, by region

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Five-year forecast of house price growth in the UK 2025-2029, by region [Dataset]. https://www.statista.com/statistics/975951/united-kingdom-five-year-forecast-house-price-growth-by-region/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2024
    Area covered
    United Kingdom
    Description

    According to the forecast, the North West and Yorkshire & the Humber are the UK regions expected to see the highest overall growth in house prices over the five-year period between 2025 and 2029. Just behind are the North East and West Midlands. In London, house prices are expected to rise by **** percent.

  7. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  8. T

    United Kingdom House Price Index

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom House Price Index [Dataset]. https://tradingeconomics.com/united-kingdom/housing-index
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Oct 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1983 - Oct 31, 2025
    Area covered
    United Kingdom
    Description

    Housing Index in the United Kingdom increased to 517.10 points in October from 514.20 points in September of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  9. House Price Prediction (Simplified for Regression)

    • kaggle.com
    zip
    Updated Jul 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). House Price Prediction (Simplified for Regression) [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/house-price-prediction-simplified-for-regression
    Explore at:
    zip(17845 bytes)Available download formats
    Dataset updated
    Jul 1, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset Description:

    This dataset contains information on real estate transactions, focusing on properties in an urban setting. It includes the following columns:

    • Transaction date: Date of the property transaction.
    • House age: Age of the house in years at the time of the transaction.
    • Distance to the nearest MRT station: Proximity to the nearest Mass Rapid Transit station in meters.
    • Number of convenience stores: Count of convenience stores in the vicinity.
    • Latitude: Geographic coordinate specifying the north-south position of the property.
    • Longitude: Geographic coordinate specifying the east-west position of the property.
    • House price of unit area: Price per unit area of the property.

    Context:

    This dataset is valuable for analyzing factors influencing urban property prices, including location, accessibility to public transport, neighborhood amenities, and property age. It is suitable for regression analysis, spatial analysis, and predictive modeling tasks aimed at understanding real estate market trends and pricing dynamics in urban environments.

  10. U

    United States House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 3.3% YoY in Sep 2025, following an increase of 4.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2025, with an average growth rate of -12.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  11. T

    Netherlands Existing House Price Index

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Netherlands Existing House Price Index [Dataset]. https://tradingeconomics.com/netherlands/housing-index
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1995 - Oct 31, 2025
    Area covered
    Netherlands
    Description

    Housing Index in Netherlands increased to 152.30 points in October from 151.60 points in September of 2025. This dataset provides - Netherlands House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  12. Prime property price growth forecast in Central London (UK) 2025-2029

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prime property price growth forecast in Central London (UK) 2025-2029 [Dataset]. https://www.statista.com/statistics/323638/central-london-uk-prime-property-price-forecast/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    Prices for prime residential real estate in Central London were expected to decline slightly in 2024, followed by a gradual increase until 2028, according to a *********** forecast. During the five-year period, the prices are forecast to rise by **** percent. In comparison, regional prime property prices and Outer London prime property prices are forecast to grow at a lower rate.

  13. r

    Home Price Forecast

    • reventure.app
    json
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reventure (2024). Home Price Forecast [Dataset]. https://www.reventure.app/forecast
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Reventure
    License

    https://www.reventure.app/termshttps://www.reventure.app/terms

    Time period covered
    Apr 1, 2024 - Apr 1, 2025
    Area covered
    United States
    Description

    The most accurate home price forecast in the U.S. Housing Market with 72% correlation coefficient in predicting value growth from April 2024 to 2025.

  14. Average house price in Saskatchewan, Canada 2018-2024, with a forecast by...

    • statista.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price in Saskatchewan, Canada 2018-2024, with a forecast by 2026 [Dataset]. https://www.statista.com/statistics/604251/median-house-prices-saskatchewan/
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    The average house price in Saskatchewan was about ******* Canadian dollars in 2024, and according to the forecast, is set to increase in the next two years. However, house price growth in the province is expected to be slower than the national average. In terms of home prices, Saskatchewan is one of the most affordable provinces for housing. Saskatchewan: key factsSaskatchewan is a province located between Alberta and Manitoba north of the Canada-United States border. In 2023, the population of Saskatchewan was over *** million, which placed it as the sixth most populous Canada province. However, the population has been on the rise since 2006, so this may change in the future. Future of the housing marketThe number of housing starts in the province has been falling since 2012, which suggests that either supply is outstripping demand or that it’s simply not profitable enough for property developers. Some real estate experts in the region believe that the falling price of oil is causing the housing market slowdown because there are fewer jobs in the region as a result. However, they expect that the market will pick up again in the near future.

  15. T

    Portugal Residential House Price Index

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Portugal Residential House Price Index [Dataset]. https://tradingeconomics.com/portugal/housing-index
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2009 - Jun 30, 2025
    Area covered
    Portugal
    Description

    Housing Index in Portugal increased to 258.78 points in the second quarter of 2025 from 247.05 points in the first quarter of 2025. This dataset provides - Portugal House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. House price growth forecast in the United Kingdom 2020-2024, by region

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price growth forecast in the United Kingdom 2020-2024, by region [Dataset]. https://www.statista.com/statistics/975935/united-kingdom-house-price-growth-by-region/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 2020
    Area covered
    United Kingdom
    Description

    The statistic displays a **** year forecast for house price growth in the United Kingdom (UK) from 2020 to 2024, revised with the coronavirus (covid-19) impact on the market. According to the forecast, 2020 and 2021 will likely see a slower to no increase in house prices followed by a gradual recovery between 2022 and 2024. North West, North East, Yorkshire & the Humber, and Scotland prices are forecast to bounce back quicker than other UK regions with higher **** year price increase.

  17. House Price Regression Dataset

    • kaggle.com
    zip
    Updated Sep 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prokshitha Polemoni (2024). House Price Regression Dataset [Dataset]. https://www.kaggle.com/datasets/prokshitha/home-value-insights
    Explore at:
    zip(27045 bytes)Available download formats
    Dataset updated
    Sep 6, 2024
    Authors
    Prokshitha Polemoni
    Description

    Home Value Insights: A Beginner's Regression Dataset

    This dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.

    Features:

    1. Square_Footage: The size of the house in square feet. Larger homes typically have higher prices.
    2. Num_Bedrooms: The number of bedrooms in the house. More bedrooms generally increase the value of a home.
    3. Num_Bathrooms: The number of bathrooms in the house. Houses with more bathrooms are typically priced higher.
    4. Year_Built: The year the house was built. Older houses may be priced lower due to wear and tear.
    5. Lot_Size: The size of the lot the house is built on, measured in acres. Larger lots tend to add value to a property.
    6. Garage_Size: The number of cars that can fit in the garage. Houses with larger garages are usually more expensive.
    7. Neighborhood_Quality: A rating of the neighborhood’s quality on a scale of 1-10, where 10 indicates a high-quality neighborhood. Better neighborhoods usually command higher prices.
    8. House_Price (Target Variable): The price of the house, which is the dependent variable you aim to predict.

    Potential Uses:

    1. Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.

    2. Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.

    3. Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.

    4. Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.

    Versatility:

    • The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.

    • It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.

    • This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.

  18. Residential real estate price forecast change in Finland 2021-2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Residential real estate price forecast change in Finland 2021-2024 [Dataset]. https://www.statista.com/statistics/1174917/residential-real-estate-price-forecast-change-in-finland/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Finland
    Description

    Finland's house prices grew by about **** percent in 2021, but according to the forecast the growth is expected to slow down in the following years. In 2023, the average house price is forecast to decrease by **** percent and in 2024, the trend is to reverse, with an annual growth of ***** percent. The average square meter price of apartments in Finland's largest cities ranged between ***** euros and ***** euros in 2022.

  19. UK House Price Index: data downloads August 2024

    • gov.uk
    Updated Oct 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2024). UK House Price Index: data downloads August 2024 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-august-2024
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_16_10_24" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  20. Housing Price Prediction using DT and RF in R

    • kaggle.com
    zip
    Updated Aug 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vikram amin (2023). Housing Price Prediction using DT and RF in R [Dataset]. https://www.kaggle.com/datasets/vikramamin/housing-price-prediction-using-dt-and-rf-in-r
    Explore at:
    zip(629100 bytes)Available download formats
    Dataset updated
    Aug 31, 2023
    Authors
    vikram amin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    • Objective: To predict the prices of houses in the City of Melbourne
    • Approach: Using Decision Tree and Random Forest https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Ffc6fb7d0bd8e854daf7a6f033937a397%2FPicture1.png?generation=1693489996707941&alt=media" alt="">
    • Data Cleaning:
    • Date column is shown as a character vector which is converted into a date vector using the library ‘lubridate’
    • We create a new column called age to understand the age of the house as it can be a factor in the pricing of the house. We extract the year from column ‘Date’ and subtract it from the column ‘Year Built’
    • We remove 11566 records which have missing values
    • We drop columns which are not significant such as ‘X’, ‘suburb’, ‘address’, (we have kept zipcode as it serves the purpose in place of suburb and address), ‘type’, ‘method’, ‘SellerG’, ‘date’, ‘Car’, ‘year built’, ‘Council Area’, ‘Region Name’
    • We split the data into ‘train’ and ‘test’ in 80/20 ratio using the sample function
    • Run libraries ‘rpart’, ‘rpart.plot’, ‘rattle’, ‘RcolorBrewer’
    • Run decision tree using the rpart function. ‘Price’ is the dependent variable https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F6065322d19b1376c4a341a4f22933a51%2FPicture2.png?generation=1693490067579017&alt=media" alt="">
    • Average price for 5464 houses is $1084349
    • Where building area is less than 200.5, the average price for 4582 houses is $931445. Where building area is less than 200.5 & age of the building is less than 67.5 years, the avg price for 3385 houses is $799299.6.
    • $4801538 is the Highest average prices of 13 houses where distance is lower than 5.35 & building are is >280.5
      https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F136542b7afb6f03c1890bae9b07dc464%2FDecision%20Tree%20Plot.jpeg?generation=1693490124083168&alt=media" alt="">
    • We use the caret package for tuning the parameter and the optimal complexity parameter found is 0.01 with RMSE 445197.9 https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Feb1633df9dd61ba3a51574873b055fd0%2FPicture3.png?generation=1693490163033658&alt=media" alt="">
    • We use library (Metrics) to find out the RMSE ($392107), MAPE (0.297) which means an accuracy of 99.70% and MAE ($272015.4)
    • Variables ‘postcode’, longitude and building are the most important variables
    • Test$Price indicates the actual price and test$predicted indicates the predicted price for particular 6 houses. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F620b1aad968c9aee169d0e7371bf3818%2FPicture4.png?generation=1693490211728176&alt=media" alt="">
    • We use the default parameters of random forest on the train data https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fe9a3c3f8776ee055e4a1bb92d782e19c%2FPicture5.png?generation=1693490244695668&alt=media" alt="">
    • The below image indicates that ‘Building Area’, ‘Age of the house’ and ‘Distance’ are the most important variables that affect the price of the house. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc14d6266184db8f30290c528d72b9f6b%2FRandom%20Forest%20Variables%20Importance.jpeg?generation=1693490284920037&alt=media" alt="">
    • Based on the default parameters, RMSE is $250426.2, MAPE is 0.147 (accuracy is 99.853%) and MAE is $151657.7
    • Error starts to remain constant between 100 to 200 trees and thereafter there is almost minimal reduction. We can choose N tree=200. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F365f9e8587d3a65805330889d22f9e60%2FNtree%20Plot.jpeg?generation=1693490308734539&alt=media" alt="">
    • We tune the model and find mtry = 3 has the lowest out of bag error
    • We use the caret package and use 5 fold cross validation technique
    • RMSE is $252216.10 , MAPE is 0.146 (accuracy is 99.854%) , MAE is $151669.4
    • We can conclude that Random Forest give us more accurate results as compared to Decision Tree
    • In Random Forest , the default parameters (N tree = 500) give us lower RMSE and MAPE as compared to N tree = 200. So we can proceed with those parameters.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
Organization logo

Housing Prices Dataset

Housing Prices Prediction - Regression Problem

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(4740 bytes)Available download formats
Dataset updated
Jan 12, 2022
Authors
M Yasser H
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

Description:

A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

Acknowledgement:

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Objective:

  • Understand the Dataset & cleanup (if required).
  • Build Regression models to predict the sales w.r.t a single & multiple feature.
  • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
Search
Clear search
Close search
Google apps
Main menu