Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterThe UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_16_10_24" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_16_10_24" class="govuk-link">Average price (CSV, 9.4MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_16_10_24" class="govuk-link">Average price by property type (CSV, 28MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_16_10_24" class="govuk-link">Sales (CSV, 5MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_16_10_24" class="govuk-link">Cash mortgage sales (CSV, 7MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_16_10_24" class="govuk-link">First time buyer and former owner occupier (CSV, 6.5MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_16_10_24" class="govuk-link">New build and existing resold property (CSV, 17.1MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_16_10_24" class="govuk-link">Index (CSV, 6.2MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_16_10_24" class="govuk-link">Index seasonally adjusted (CSV, 213KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_16_10_24" class="govuk-link">Average price seasonally adjusted (CSV, 222KB)
<a rel="external" href="https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2024-08.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=repossession&utm_term=9.30_16_10_24" cla
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Reference: https://www.zillow.com/research/zhvi-methodology/
In setting out to create a new home price index, a major problem Zillow sought to overcome in existing indices was their inability to deal with the changing composition of properties sold in one time period versus another time period. Both a median sale price index and a repeat sales index are vulnerable to such biases (see the analysis here for an example of how influential the bias can be). For example, if expensive homes sell at a disproportionately higher rate than less expensive homes in one time period, a median sale price index will characterize this market as experiencing price appreciation relative to the prior period of time even if the true value of homes is unchanged between the two periods.
The ideal home price index would be based off sale prices for the same set of homes in each time period so there was never an issue of the sales mix being different across periods. This approach of using a constant basket of goods is widely used, common examples being a commodity price index and a consumer price index. Unfortunately, unlike commodities and consumer goods, for which we can observe prices in all time periods, we can’t observe prices on the same set of homes in all time periods because not all homes are sold in every time period.
The innovation that Zillow developed in 2005 was a way of approximating this ideal home price index by leveraging the valuations Zillow creates on all homes (called Zestimates). Instead of actual sale prices on every home, the index is created from estimated sale prices on every home. While there is some estimation error associated with each estimated sale price (which we report here), this error is just as likely to be above the actual sale price of a home as below (in statistical terms, this is referred to as minimal systematic error). Because of this fact, the distribution of actual sale prices for homes sold in a given time period looks very similar to the distribution of estimated sale prices for this same set of homes. But, importantly, Zillow has estimated sale prices not just for the homes that sold, but for all homes even if they didn’t sell in that time period. From this data, a comprehensive and robust benchmark of home value trends can be computed which is immune to the changing mix of properties that sell in different periods of time (see Dorsey et al. (2010) for another recent discussion of this approach).
For an in-depth comparison of the Zillow Home Value Index to the Case Shiller Home Price Index, please refer to the Zillow Home Value Index Comparison to Case-Shiller
Each Zillow Home Value Index (ZHVI) is a time series tracking the monthly median home value in a particular geographical region. In general, each ZHVI time series begins in April 1996. We generate the ZHVI at seven geographic levels: neighborhood, ZIP code, city, congressional district, county, metropolitan area, state and the nation.
Estimated sale prices (Zestimates) are computed based on proprietary statistical and machine learning models. These models begin the estimation process by subdividing all of the homes in United States into micro-regions, or subsets of homes either near one another or similar in physical attributes to one another. Within each micro-region, the models observe recent sale transactions and learn the relative contribution of various home attributes in predicting the sale price. These home attributes include physical facts about the home and land, prior sale transactions, tax assessment information and geographic location. Based on the patterns learned, these models can then estimate sale prices on homes that have not yet sold.
The sale transactions from which the models learn patterns include all full-value, arms-length sales that are not foreclosure resales. The purpose of the Zestimate is to give consumers an indication of the fair value of a home under the assumption that it is sold as a conventional, non-foreclosure sale. Similarly, the purpose of the Zillow Home Value Index is to give consumers insight into the home value trends for homes that are not being sold out of foreclosure status. Zillow research indicates that homes sold as foreclosures have typical discounts relative to non-foreclosure sales of between 20 and 40 percent, depending on the foreclosure saturation of the market. This is not to say that the Zestimate is not influenced by foreclosure resales. Zestimates are, in fact, influenced by foreclosure sales, but the pathway of this influence is through the downward pressure foreclosure sales put on non-foreclosure sale prices. It is the price signal observed in the latter that we are attempting to measure and, in turn, predict with the Zestimate.
Market Segments Within each region, we calculate the ZHVI for various subsets of homes (or mar...
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was actually made to check the correlations between a housing price index and its crime rate. Rise and fall of housing prices can be due to various factors with obvious reasons being the facilities of the house and its neighborhood. Think of a place like Detroit where there are hoodlums and you don't want to end up buying a house in the wrong place. This data set will serve as historical data for crime rate data and this in turn can be used to predict whether the housing price will rise or fall. Rise in housing price will suggest decrease in crime rate over the years and vice versa.
The headers are self explanatory. index_nsa is the housing price non seasonal index.
Thank you to my team who helped in achieving this.
https://www.kaggle.com/marshallproject/crime-rates https://catalog.data.gov/dataset/fhfa-house-price-indexes-hpis Data was collected from these 2 sources and merged to get the resulting dataset.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK House Price Index (UK HPI) is an official statistic that captures changes in the value of residential properties in the United Kingdom. The UK HPI is calculated by the Office for National Statistics and Land & Property Services Northern Ireland. Data for the UK House Price Index is provided by HM Land Registry, Registers of Scotland, Land & Property Services Northern Ireland and the Valuation Office Agency. Geographic coverage England, Scotland, Wales and Northern Ireland License statement UK HPI data is published under Open Government Licence. When using or publishing data from the UK HPI reports, background tables in the statistical datatset: UK House Price Index: data downloads or search tool, you will need to add the following attribution statement: Contains HM Land Registry data © Crown copyright and database right [year of supply or date of publication]. This data is licensed under the Open Government Licence v3.0. When you publish the data, be sure to include information about the nature of the data and any relevant dates for the period of time covered. Neither HM Land Registry nor any third party shall be liable for any loss or damage, direct, indirect or consequential, arising from: any inaccuracy or incompleteness of the data in the UK HPI any decision made or action taken in reliance upon the data Neither shall HM Land Registry or any third party be liable for loss of business resources, lost profits or any punitive indirect, consequential, special or similar damages whatsoever, whether in contract or tort or otherwise, even if advised of the possibility of such damages being incurred.
Facebook
TwitterMexico's housing market demonstrates significant regional price variations, with Mexico City emerging as the most expensive area for residential property in the third quarter of 2025. The capital city's average house price of 3.93 million Mexican pesos far exceeds the national average of 1.86 million pesos, highlighting the stark contrast in property values across the country. This disparity reflects broader economic and demographic trends shaping Mexico's real estate landscape. Sustained growth in housing prices The Mexican housing market has experienced substantial growth over the past decade, with home prices more than doubling since 2010. By the second quarter of 2025, the nominal house price index reached 287 points, representing a 187 percent increase from the baseline year. Even when adjusted for inflation, the real house price index showed a notable 50 percent growth, underscoring the market's resilience and attractiveness to investors. The mortgage market is dominated by three main player types: Infonavit, Fovissste, and commercial banks including Sofomes. In 2023, Infonavit, a scheme by Mexico's National Housing Fund Institute which provides lending to workers in the formal sector, was responsible for the majority of mortgages granted to individuals. Challenges in mortgage lending Despite the overall growth in housing prices, Mexico's mortgage market has faced challenges in recent years. The number of new mortgage loans granted has declined over the past decade, falling by approximately 200,000 loans between 2008 and 2023. This decrease in lending activity may be attributed to various factors, including economic uncertainties and changing consumer preferences. The state of Mexico, which is home to 13 percent of the country's population, likely plays a significant role in shaping these trends given its large demographic influence on the national housing market.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
Global Prefab House market size 2025 was XX Million. Prefab House Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.
Facebook
TwitterThe average house price in the Canadian province of Prince Edward Island stood at ******* Canadian dollars in 2024 and was expected to increase in the next two years. By 2026, the average house price is forecast to reach ******* Canadian dollars. Compared to other provinces in Canada, Prince Edward Island stood below the national average in terms of house prices. Nevertheless, housing was still significantly more expensive than in Newfoundland and New Brunswick. House prices in Canada Prince Edward Island is one of the most affordable Canadian provinces for buying a house, with prices almost half below the national median in 2024. The national figure is somewhat skewed however by the extremely high cost of housing in British Colombia, and, to a lesser extent, Ontario. A better measure of affordability is the provincial house-price-to-income ratio, which shows Prince Edward Island to be the second most affordable province. Global comparison Canada is one of the most expensive countries in the OECD in terms of house-price-to-income ratio. In 2023, Canada scored higher than the United States, the UK, and Korea. That means that the cost of housing has increased at a much higher rate than the average income in the country.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.