Facebook
TwitterThe UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_20_03_24" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_20_03_24" class="govuk-link">Average price (CSV, 9.4MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_20_03_24" class="govuk-link">Average price by property type (CSV, 28MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_20_03_24" class="govuk-link">Sales (CSV, 5MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_20_03_24" class="govuk-link">Cash mortgage sales (CSV, 7MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_20_03_24" class="govuk-link">First time buyer and former owner occupier (CSV, 6.3MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_20_03_24" class="govuk-link">New build and existing resold property (CSV, 17MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_20_03_24" class="govuk-link">Index (CSV, 6.1MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_20_03_24" class="govuk-link">Index seasonally adjusted (CSV, 209KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_20_03_24" class="govuk-link">Average price seasonally adjusted (CSV, 218KB)
<a rel="external" href="https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=repossession&utm_term=9.30_20_03_24" class
Facebook
TwitterThe FHFA House Price Index (FHFA HPI®) is the nation’s only collection of public, freely available house price indexes that measure changes in single-family home values based on data from all 50 states and over 400 American cities that extend back to the mid-1970s. The FHFA HPI incorporates tens of millions of home sales and offers insights about house price fluctuations at the national, census division, state, metro area, county, ZIP code, and census tract levels. FHFA uses a fully transparent methodology based upon a weighted, repeat-sales statistical technique to analyze house price transaction data. What does the FHFA HPI represent? The FHFA HPI is a broad measure of the movement of single-family house prices. The FHFA HPI is a weighted, repeat-sales index, meaning that it measures average price changes in repeat sales or refinancings on the same properties. This information is obtained by reviewing repeat mortgage transactions on single-family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac since January 1975. The FHFA HPI serves as a timely, accurate indicator of house price trends at various geographic levels. Because of the breadth of the sample, it provides more information than is available in other house price indexes. It also provides housing economists with an improved analytical tool that is useful for estimating changes in the rates of mortgage defaults, prepayments and housing affordability in specific geographic areas. U.S. Federal Housing Finance Agency, All-Transactions House Price Index for Connecticut [CTSTHPI], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CTSTHPI, August 2, 2023.
Facebook
TwitterIn 2023, Sagaponack, NY (zip code *****) was the zip code that witnessed the highest luxury house price increase in the United States. Year-on-year, prices in that zip code increased by ** percent. Ross, CA (zip code *****) stood at the other end of the scale, with a decline of ** percent.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Quarterly house price data based on a sub-sample of the Regulated Mortgage Survey.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
FHFA House Price IndexThe FHFA House Price Index (FHFA HPI®) is a comprehensive collection of publicly available house price indexes that measure changes in single-family home values based on data that extend back to the mid-1970s from all 50 states and over 400 American cities. The FHFA HPI incorporates tens of millions of home sales and offers insights about house price fluctuations at the national, census division, state, metro area, county, ZIP code, and census tract levels. FHFA uses a fully transparent methodology based upon a weighted, repeat-sales statistical technique to analyze house price transaction data.What does the FHFA HPI represent?The FHFA HPI is a broad measure of the movement of single-family house prices. The FHFA HPI is a weighted, repeat-sales index, meaning that it measures average price changes in repeat sales or refinancings on the same properties. This information is obtained by reviewing repeat mortgage transactions on single-family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac since January 1975.The FHFA HPI serves as a timely, accurate indicator of house price trends at various geographic levels. Because of the breadth of the sample, it provides more information than is available in other house price indexes. It also provides housing economists with an improved analytical tool that is useful for estimating changes in the rates of mortgage defaults, prepayments and housing affordability in specific geographic areas.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Massachusetts (MASTHPI) from Q1 1975 to Q3 2025 about MA, appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
TwitterHouse prices in England have increased notably in the last 10 years, despite a slight decline in 2023. In December 2024, London retained its position as the most expensive regional market, with the average house price at ******* British pounds. According to the UK regional house price index, Northern Ireland saw the highest increase in house prices since 2023.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Summary statistics for housing transactions by local authority in England and Wales, on an annual basis, updated quarterly using HM Land Registry Price Paid Data. Select values from the Year and Month dimensions for data for a 12-month period ending that month and year (e.g. selecting June and 2018 will return the twelve months to June 2018).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
London Property Prices Dataset 200k+ records Overview This dataset offers a comprehensive snapshot of residential properties in London, capturing both historical and current market data. It includes property-specific information such as address, geographic coordinates, and various price estimates. Data spans from past transaction prices to present estimates for sale and rental values, making it ideal for real estate analysis, investment modeling, and trend forecasting.
Key Columns fullAddress: Complete address of the property. postcode: Postal code identifying specific areas in London. outcode: First part of the postcode, grouping properties into broader geographic zones. latitude & longitude: Geographic coordinates for mapping or location-based analysis. property details: Includes bathrooms, bedrooms, floorAreaSqM, livingRooms, tenure (e.g., leasehold or freehold), and propertyType (e.g., flat, maisonette). energy rating: Current energy rating, indicating the property’s energy efficiency. Pricing Information Rental Estimates: Ranges for estimated rental values (rentEstimate_lowerPrice, rentEstimate_currentPrice, rentEstimate_upperPrice). Sale Estimates: Current sale price estimates with confidence levels and historical changes. saleEstimate_currentPrice: Current estimated sale price. saleEstimate_confidenceLevel: Confidence in the sale price estimate (LOW, MEDIUM, HIGH). saleEstimate_valueChange: Numeric and percentage change in sale value over time. Transaction History: Date-stamped sale prices with historic price changes, providing insight into property appreciation or depreciation. Potential Applications This dataset enables a variety of analyses:
Market Trend Analysis: Track how property values and rents have evolved over time. Investment Insights: Identify high-growth areas and property types based on historical and estimated price changes. Geospatial Analysis: Use location data to visualize price distributions and trends across London. Usage Recommendations This dataset is well-suited for machine learning projects predicting property values, rent estimations, or analyzing urban property trends. With rich details spanning multiple facets of the real estate market, it’s an essential resource for data scientists, analysts, and investors exploring the London property market.
Facebook
TwitterThis house price per square metre dataset is created through complex address-based matching between the Land Registry’s Price Paid Data (LR-PPD) and property size information from the Domestic Energy Performance Certificates (EPC) data published by the Department for Levelling Up, Housing and Communities (DLUHC, formerly MHCLG). Details of the data linkage are published in the UCL Open: Environment along with the related linkage code via the UK Data Service ReShare repository. During this data linkage process, the transactions assigned as category B (Additional Price Paid entry) and other property types are removed. Here we publish our latest limited attribute version of the uncorrected house price per square metre dataset in England and Wales with the LR-PPD data (1/1/1995-26/2/2021) and Domestic EPCs data (the sixth version, up to 20/9/2020) downloaded on 1/4/2021 for non-commercial purpose. This uncorrected version of house price per square metre dataset records over 18 million transactions with 16 variables in England and Wales since 1995. Unlike in our published article, in this uncorrected version we have not removed transactions with any improbable price per square metre values - i.e. where either the transaction price or total floor area values are null, 0 or too low to be realistic. This uncorrected version of the data will offer the most flexibility for researchers. We offer technical validation and data cleaning code via the UKDA ReShare repository to help users evaluate the representation of the linked data for a given time period. The data cleaning code shows our methods for cleaning up unlikely floor size records before using this data in analysis. Users can create their own rules and undertake this clean-up process based on their own experience and research aims. This limited attribute version is published by local authority (2021 version). Details of the 16 variables are described in the explanation file. The National Statistics Postcode Lookup NSPL (May 2021 version) is used to assign the local authority unit for your production of area-based statistics. Users can match historical changes in LA boundaries by choosing appropriate aggregations using, for instance ONSPD, and the postcode variable in our dataset. An extended version of this dataset containing additional variables is available from UK Data Service Reshare service. Users can directly access this full version dataset (tranall_link_01042021.zip) via the following link: https://reshare.ukdataservice.ac.uk/855033/ . Accompanying LR-PPD and EPC data are also supplied through the ReShare service. Users who would like to attach their own additional variables from the LR-PPD data are advised to use the transactionid variable to link to the LR-PPD (LRPPD_01042021.zip). Users who would like to attach additional variables from the EPC data are advised to use the id variable to link to the sixth version Domestic EPCs (epc6_id.zip). The 2024 update
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about
Facebook
TwitterVITAL SIGNS INDICATOR
Home Prices (EC7)
FULL MEASURE NAME
Home Prices
LAST UPDATED
December 2022
DESCRIPTION
Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.
DATA SOURCE
Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
2000-2021
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
2000-2021
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
2000-2021
Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
2000-2021
US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
2020 Census Blocks
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.
For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.
Facebook
TwitterBy Jeff [source]
This dataset contains information on 1000 properties in Australia, including location, size, price, and other details
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
If you're looking for a dataset on Australian housing data, this is a great option. This dataset contains information on over 1000 properties in Australia, including location, size, price, and other details. With this data, you can answer questions like What is the average price of a home in Australia?, What are the most popular type of homes in Australia?, and more
- This dataset can be used to predict hosing prices in Australia.
- This dataset can be used to find relationships between housing prices and location.
- This dataset can be used to find relationships between housing prices and features such as size, number of bedrooms, and number of bathrooms
If you use this dataset in your research, please credit the original authors. Data Source
License
See the dataset description for more information.
File: RealEstateAU_1000_Samples.csv | Column name | Description | |:--------------------|:---------------------------------------------------------------------------------------| | breadcrumb | A breadcrumb is a text trail that shows the user's location within a website. (String) | | category_name | The name of the category that the listing belongs to. (String) | | property_type | The type of property being listed. (String) | | building_size | The size of the property's building, in square meters. (Numeric) | | land_size | The size of the property's land, in square meters. (Numeric) | | preferred_size | The preferred size of the property, in square meters. (Numeric) | | open_date | The date that the property was first listed for sale. (Date) | | listing_agency | The agency that is listing the property. (String) | | price | The listing price of the property. (Numeric) | | location_number | The number that corresponds to the property's location. (Numeric) | | location_type | The type of location that the property is in. (String) | | location_name | The name of the location that the property is in. (String) | | address | The property's address. (String) | | address_1 | The first line of the property's address. (String) | | city | The city that the property is located in. (String) | | state | The state that the property is located in. (String) | | zip_code | The zip code that the property is located in. (String) | | phone | The listing agent's phone number. (String) | | latitude | The property's latitude. (Numeric) | | longitude | The property's longitude. (Numeric) | | product_depth | The depth of the product. (Numeric) | | bedroom_count | The number of bedrooms in the property. (Numeric) | | bathroom_count | The number of bathrooms in the property. (Numeric) | | parking_count | The number of parking spaces in the property. (Numeric) | | RunDate | The date that the listing was last updated. (Date) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Jeff.
Facebook
TwitterThis repository is the fourth updated version of the attribute-linked residential property price dataset in the UK Data Service ReShare (854240) (https://reshare.ukdataservice.ac.uk/854240/). This dataset contains individual property transactions and associated variables from both Land Registry Price Paid Dataset (LR PPD) and the Department for Levelling Up, Housing and Communities (DLUHC, formerly MHCLG) Domestic Energy Performance Certificate (EPC) data. It is a linked dataset produced by address matching between LR PPD data (1/1/1995–31/10/2024) and Domestic EPC data (up to 31/10/2024). It is the full version of the 2024 update of the dataset published in the Greater London Authority (GLA) London Datastore (https://data.london.gov.uk/dataset/house-price-per-square-metre-in-england-and-wales).
The linked dataset (tranall_link_26122024) provided here is the initial, uncleaned version, intended to offer maximum flexibility for users to clean the data according to their research purposes. This linked dataset records over 22 million transactions with 106 variables across England and Wales, covering the period from 01/01/1995 to 31/10/2024. We have provided technical validation and data cleaning code in UKDA ReShare 854240 to help users evaluate the data structure and perform their own cleaning. There is no single way to clean this raw linked dataset, so we encourage users to develop their own cleaning process based on their research needs. This repository also includes the original Land Registry Price Paid Data (LR PPD) and Domestic EPCs used to create the linked dataset (house price per square metre dataset). Unlike previous versions, this updated dataset no longer includes the id variable (created by the authors). Instead, for the first time, both the Domestic EPCs and the linked dataset retain the LMK_KEY variable, which originates from the Domestic EPCs dataset. This change was made because LMK_KEY serves as a unique identifier, with no duplicate records since 2024. Five address-related variables from the original Domestic EPCs dataset(ADDRESS1, ADDRESS2, ADDRESS3, POSTCODE, and ADDRESS) have been removed from the EPC data in this repository. The priceper and classt variables were created by the authors and can be found in the linked dataset (tranall_link_26122024.zip). A detailed explanation of these fields is available on the GLA London Datastore (https://data.london.gov.uk/dataset/house-price-per-square-metre-in-england-and-wales). The lad23cd field originates from the NSPL dataset. Since November 2021, DLUHC has published Domestic EPCs with the Unique Property Reference Number (UPRN). As a result, both the EPC and the full linked dataset in this repository include UPRN information from the Domestic EPCs
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset expands upon the original London Property Listings by including additional attributes to facilitate deeper analysis of rental properties in London. It is ideal for research and projects related to real estate trends, price categorization, and area-wise analysis in one of the world's busiest markets.
This dataset was prepared and uploaded by Mehmet Emre Sezer. It is intended for educational and non-commercial use.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset explores the potential relationship between art presence and property prices in London neighborhoods. We conducted an analysis to investigate this by measuring the proportion of Flickr photographs with the keyword ‘art’ attached. We then compared that data to residential property price gains for each Inner London neighborhood, seeking out any associations or correlations between art presence and housing value. Our findings demonstrate the impact of aesthetics on neighborhoods, illustrating how visual environment influences socio-economic conditions. With this dataset, we aim to show how online platforms can be leveraged for quantitative data collection and analysis which can visualize these relationships so as to better understand our urban settings
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to investigate the relationship between art presence and property prices in London neighborhoods. The dataset includes three columns – Postcode.District, Rank.Mean.Change, and Proportion.Art.Photos – which provide quantitative analyses of the association between art presence and price gains for London neighborhoods.
To use this dataset, first identify the postcode district for which you wish to access data by referencing a street list or PostCodeSearcher website that outlines postcodes for each neighborhood in London(http://postcodesearcher.com/london). This will allow you to easily find properties within each neighborhood as there are specific postcode districts that demarcate boundaries of particular areas (for example W2 covers Bayswater).
Once you have identified a postcode district of interest, review the ‘Rank.Mean Change’ column to explore how residential property prices have changed relative to other areas in Inner London since 2010-13 using fractions (1 = highest gain; 25 = lowest gain). Focusing on one particular location will also provide an idea about their current pricing level compared with others in order to evaluate whether further investment is worthwhile or not based on its past history of growth rates . It is important to note that higher rank numbers indicate higher price gains while lower rank numbers indicate lower price gains relative with respect from 2010-13 timeframe therefore comparing these values across many neighborhoods gives an indication as what area offers more value growth wise over given time period..
Finally pay attention how much did art contributes as far change in property price goes? To answer this question , review ‘Proportion Art Photos’ column which provides ratio of Flickr photographs associated with keyword 'art' attached within given regions helps identify visual characteristics within different localities.. Comparing proportions across various locations provide detail information regarding how much did share visual aesthetic characterstics impacts change in pricings accross different region.. For example it can give us further understandings if majority photographs are made up of urban landscape , abstracts or simply portrait presences had any role play when we look at relativity gains over past few years? Such comparisons help inform our understanding about potential impact art presence can have on changes stay relatively stable even during volatile market times..
By combining this data with other datasets related to demographics, infrastructure and socioeconomics present within londons different areas we can gain further insight which then allows us making informed decisions when it comes investing particular locations .
- Use this dataset to develop a predictive analytics model to identify areas in London most likely to experience an increase in residential property prices associated with the presence of art.
- Use this dataset to develop strategies and policies that promote both artistic expression and urban development in Inner London neighborhoods.
- Compare the presence of art across inner London boroughs, as well as against other cities, to gain insight into the socio-economic conditions related to the visual environment of a city and its impact on life quality for citizens
If you use this dataset in your research, please credit the original authors. Data Source
**License: [CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication](https://creativecommons.org/publicd...
Facebook
TwitterVITAL SIGNS INDICATOR
Home Prices (EC7)
FULL MEASURE NAME
Home Prices
LAST UPDATED
December 2022
DESCRIPTION
Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.
DATA SOURCE
Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
2000-2021
California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
2000-2021
US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
2000-2021
Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
2000-2021
US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
2020 Census Blocks
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.
For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about
Facebook
TwitterLast updated on 22 Feb 2025
This dataset provides comprehensive information on property sales in England and Wales, sourced from the UK government's HM Land Registry. Although the government site claims to update on the same day each month, actual updates can vary. To bridge this update variation gap, our fully automated ETL pipeline retrieves the official government data on a daily basis. This ensures that the dataset always reflects the most current transaction data available.
Our ETL (Extract, Transform, Load) process is designed to automate the data update and publishing workflow:
1. Extract:
The pipeline uses web scraping to retrieve the latest data from the official government website. This step is necessary as the site does not offer an API.
2. Transform:
Before loading the data, the ETL pipeline processes the dataset to ensure consistency and usability. As part of the transformation stage, the first column (Transaction_unique_identifier) is removed. This column is dropped during staging to focus on the most relevant transactional information. The column removal successfully reduces the data file size from almost 6GB to 3.1GB, and therefore will greatly increase the data analysis efficiency, and reduces the chance of kernal error/restart.
3. Load:
Finally, the transformed data is loaded into the dataset.
The transformed data is loaded into the dataset in two parts: - Complete Data (pp-complete.csv): This file encompasses all records from January 1995 to the present. The complete data file is replaced during each update to reflect any corrections or additional historical data. The first column is price. - Monthly Data: A separate monthly file is amended each month. This monthly archive ensures a complete record of updates over time, allowing users to track changes and trends more granularly.
The dataset (pp-complete.csv) contains records of property sales dating back to January 1995, up to the most recent monthly data. It covers various types of transactions—from residential to commercial properties—providing a holistic view of the real estate market in England and Wales.
The original data includes the following columns:
- Transaction_unique_identifier
- price
- Date_of_Transfer
- postcode
- Property_Type
- Old/New
- Duration
- PAON
- SAON
- Street
- Locality
- Town/City
- District
- County
- PPDCategory_Type
- Record_Status - monthly_file_only
Note: As part of the transformation process, the Transaction_unique_identifier column is removed from the final published pp-complete.csv data file. Therefore the first column of the pp-complete.csv file is price.
Address data Explanation - Postcode: The postal code where the property is located. - PAON (Primary Addressable Object Name): Typically the house number or name. - SAON (Secondary Addressable Object Name): Additional information if the building is divided into flats or sub-buildings. - Street: The street name where the property is located. - Locality: Additional locality information. - Town/City: The town or city where the property is located. - District: The district in which the property resides. - County: The county where the property is located. - Price Paid: The price for which the property was sold.
Ownership and Attribution This dataset is the property of HM Land Registry and is released under the Open Government Licence (OGL). If you use or publish this dataset, you are required to include the following attribution statement:
>"Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0."
The data can be used for both commercial and non-commercial purposes.
The OGL does not cover third-party rights, which HM Land Registry is not authorized to license. For any other use of the Address Data, you must contact Royal Mail.
Market Trend Analysis: Understand the ups and downs of the property market over time. Investment Research: Identify potential areas for property investment. Academic Studies: Use the data for economic research and studies related to the housing market. Policy Making: Assist government agencies in making informed decisions regarding housing policies. Real Estate Apps: Integrate the data into apps that provide property price information services.
By using this dataset, you agree to abide by the terms and conditions as specified by HM Land Registry. Failure to do so may result in legal consequences.
Facebook
TwitterThe UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_20_03_24" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_20_03_24" class="govuk-link">Average price (CSV, 9.4MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_20_03_24" class="govuk-link">Average price by property type (CSV, 28MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_20_03_24" class="govuk-link">Sales (CSV, 5MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_20_03_24" class="govuk-link">Cash mortgage sales (CSV, 7MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_20_03_24" class="govuk-link">First time buyer and former owner occupier (CSV, 6.3MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_20_03_24" class="govuk-link">New build and existing resold property (CSV, 17MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_20_03_24" class="govuk-link">Index (CSV, 6.1MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_20_03_24" class="govuk-link">Index seasonally adjusted (CSV, 209KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_20_03_24" class="govuk-link">Average price seasonally adjusted (CSV, 218KB)
<a rel="external" href="https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2024-01.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=repossession&utm_term=9.30_20_03_24" class