Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81ā102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterAfter a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Task Description: Real Estate Price Prediction
This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.
The goal is to build a regression model that can predict the Price of a property based on the provided features.
Dataset Columns:
ID: A unique identifier for each property.
Square_Feet: The area of the property in square meters.
Num_Bedrooms: The number of bedrooms in the property.
Num_Bathrooms: The number of bathrooms in the property.
Num_Floors: The number of floors in the property.
Year_Built: The year the property was built.
Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).
Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).
Garage_Size: The size of the garage in square meters.
Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).
Distance_to_Center: The distance from the property to the city center in kilometers.
Price: The target variable that represents the price of the property. This is the value we aim to predict.
Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.
Facebook
TwitterHouse prices in Spain are forecast to fall in 2024, after increasing by *** percent in 2023. Nevertheless, prices are expected to pick up in 2025, with an increase of ***********. The Portuguese housing market, on the other hand, grew by *** percent in 2023, but was forecast to contract in the next two years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This dataset was created by ditsa pandey
Released under ODC Public Domain Dedication and Licence (PDDL)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterAccording to the forecast, the North West and Yorkshire & the Humber are the UK regions expected to see the highest overall growth in house prices over the five-year period between 2025 and 2029. Just behind are the North East and West Midlands. In London, house prices are expected to rise by **** percent.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset Description:
This dataset contains information on real estate transactions, focusing on properties in an urban setting. It includes the following columns:
Context:
This dataset is valuable for analyzing factors influencing urban property prices, including location, accessibility to public transport, neighborhood amenities, and property age. It is suitable for regression analysis, spatial analysis, and predictive modeling tasks aimed at understanding real estate market trends and pricing dynamics in urban environments.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Germany increased to 220.43 points in October from 219.91 points in September of 2025. This dataset provides the latest reported value for - Germany House Price Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThe statistic displays a **** year forecast for house price growth in the United Kingdom (UK) from 2020 to 2024, revised with the coronavirus (covid-19) impact on the market. According to the forecast, 2020 and 2021 will likely see a slower to no increase in house prices followed by a gradual recovery between 2022 and 2024. North West, North East, Yorkshire & the Humber, and Scotland prices are forecast to bounce back quicker than other UK regions with higher **** year price increase.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in China remained unchanged at -2.20 percent in October. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United Kingdom increased to 517.10 points in October from 514.20 points in September of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ideaguy3d/simple-housing-price-prediction dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Hyderabad City House Prices dataset is a detailed collection of real estate data for residential properties across various localities in Hyderabad. This dataset is aimed at real estate analysts, data scientists, urban planners, and researchers who are interested in studying the housing market, price trends, and neighborhood dynamics within Hyderabad, one of India's rapidly growing metropolitan cities.
The dataset includes the following features:
This dataset can be utilized for various purposes, including: - Market Analysis: Understanding pricing trends, supply and demand, and market conditions in different localities of Hyderabad. - Price Prediction Models: Developing machine learning models to predict property prices based on the given features. - Investment Analysis: Identifying potential investment opportunities by analyzing location, property type, and price data. - Urban Planning: Assisting urban planners in understanding housing distribution and development trends across the city.
The data has been scraped from popular real estate websites such as Magicbricks, 99acres, and Housing.com using the Scrapy framework. The data was collected in [insert month/year] and represents a snapshot of the real estate market in Hyderabad at that time.
| Title | Location | Price (L) | Rate per Sqft | Area in Sqft | Building Status |
|---|---|---|---|---|---|
| Luxurious 3 BHK Apartment | Jubilee Hills | 300 | 15,000 | 2000 | Ready to Move |
| Spacious 4 BHK Villa | Gachibowli | 450 | 10,000 | 4500 | Under Construction |
| Affordable 2 BHK Flat | Madhapur | 80 | 8,000 | 1000 | Ready to Move |
For more information or to access the dataset, please contact [Your Name] at [Your Email Address].
This dataset provides valuable insights into Hyderabad's diverse real estate market, helping stakeholders make informed decisions based on accurate and up-to-date data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vijayawada House Price Dataset (2020-2024) Predict real estate prices using location, size, and property type
** Key Variables** Area: Neighborhood name (e.g., Benz Circle, Patamata) Region_Type: Premium/Commercial/Residential (shows price tier) BHK: Number of bedrooms (1 to 5+) Size (sqft): Property area (800ā5,000 sqft range) Price_Per_Sqft: Cost per sqft (ā¹2,500āā¹7,000) Total_Price: Calculated price (Size Ć Price_Per_Sqft) Projects You can prepare using this data set : Ideal for real estate price prediction, geospatial analysis, and market trends. Predict house prices using linear regression or XGBoost Explore price trends by region or BHK count Train a classification model to categorize properties into budget/mid-range/premium Create a price heatmap of Vijayawada (if extended with geo-coordinates)
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The California House Price Prediction system utilizes advanced data analytics to forecast housing prices in the dynamic California real estate market. Drawing from a diverse range of reputable sources including real estate listings, property databases, and government records, this system ensures a robust foundation for analysis. Through meticulous data collection, cleaning, and feature engineering processes, relevant attributes such as property specifications, historical sales data, and neighborhood characteristics are carefully curated to enhance predictive accuracy. Powered by machine learning algorithms, the system provides stakeholders with invaluable insights, empowering them to make informed decisions regarding buying, selling, or investing in California real estate. Whether navigating fluctuating market trends or evaluating property investments, this predictive tool serves as a trusted resource for individuals and professionals alike, facilitating strategic and informed housing decisions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Croatia increased to 223.65 points in the second quarter of 2025 from 214.18 points in the first quarter of 2025. This dataset provides - Croatia Housing Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81ā102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.