100+ datasets found
  1. Forecast house price growth in the UK 2024-2028

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast house price growth in the UK 2024-2028 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023
    Area covered
    United Kingdom
    Description

    Just as in many other countries, the housing market in the UK grew substantially during the coronavirus pandemic, fueled by robust demand and low borrowing costs. Nevertheless, high inflation and the increase in mortgage rates has led to house price growth slowing down. According to the forecast, 2024 is expected to see house prices decrease by ***** percent. Between 2024 and 2028, the average house price growth is projected at *** percent. A contraction after a period of continuous growth In June 2022, the UK's house price index exceeded *** index points, meaning that since 2015 which was the base year for the index, house prices had increased by ** percent. In just two years, between 2020 and 2022, the index surged by ** index points. As the market stood in December 2023, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next years. Growth is forecast to be stronger in 2024 and slow down in the period between 2025 and 2028. The rental market in London is expected to follow a similar trend, with Central London slightly outperforming Greater London.

  2. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  3. House price change forecast in Spain and Portugal 2023, with a forecast by...

    • statista.com
    Updated Feb 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). House price change forecast in Spain and Portugal 2023, with a forecast by 2025 [Dataset]. https://www.statista.com/statistics/1165916/residential-real-estate-price-forecast-change-in-spain-and-portugal/
    Explore at:
    Dataset updated
    Feb 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Portugal, Spain
    Description

    House prices in Spain are forecast to fall in 2024, after increasing by 1.2 percent in 2023. Nevertheless, prices are expected to pick up in 2025, with an increase of one percent. The Portuguese housing market, on the other hand, grew by 5.5 percent in 2023, but was forecast to contract in the next two years.

  4. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - Apr 30, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 434.90 points in April from 436.70 points in March of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. R

    Residential Real Estate Market in the United States Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Residential Real Estate Market in the United States Report [Dataset]. https://www.datainsightsmarket.com/reports/residential-real-estate-market-in-the-united-states-17275
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global, United States
    Variables measured
    Market Size
    Description

    The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.

  6. United States House Prices Growth

    • ceicdata.com
    Updated Feb 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset updated
    Feb 15, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2022 - Dec 1, 2024
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 5.2% YoY in Dec 2024, following an increase of 5.4% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Dec 2024, with an average growth rate of 5.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  7. Prime property prices growth forecast in the regional market in the UK...

    • statista.com
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prime property prices growth forecast in the regional market in the UK 2024-2028 [Dataset]. https://www.statista.com/statistics/323606/uk-wide-property-price-growth/
    Explore at:
    Dataset updated
    Apr 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2024
    Area covered
    United Kingdom
    Description

    According to the forecast, the UK regional prime property real estate market is to increase by almost 14 percent by 2028. In 2024, prime property prices are expected to fall by two percent. In the following four years, growth will recover.

  8. h

    Real-Estate-Price-Prediction

    • huggingface.co
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globose Technology Solutions (2025). Real-Estate-Price-Prediction [Dataset]. https://huggingface.co/datasets/globosetechnology12/Real-Estate-Price-Prediction
    Explore at:
    Dataset updated
    Mar 7, 2025
    Authors
    Globose Technology Solutions
    Description

    Problem Statement 👉 Download the case studies here Investors and buyers in the real estate market faced challenges in accurately assessing property values and market trends. Traditional valuation methods were time-consuming and lacked precision, making it difficult to make informed investment decisions. A real estate firm sought a predictive analytics solution to provide accurate property price forecasts and market insights. Challenge Developing a real estate price prediction system involved… See the full description on the dataset page: https://huggingface.co/datasets/globosetechnology12/Real-Estate-Price-Prediction.

  9. T

    Spain House Prices

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Spain House Prices [Dataset]. https://tradingeconomics.com/spain/housing-index
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1987 - Dec 31, 2024
    Area covered
    Spain
    Description

    Housing Index in Spain increased to 1972.10 EUR/SQ. METRE in the fourth quarter of 2024 from 1921 EUR/SQ. METRE in the third quarter of 2024. This dataset provides the latest reported value for - Spain House Prices - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  10. Austria House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Austria House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/austria/house-prices-growth
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2022 - Dec 1, 2024
    Area covered
    Austria
    Description

    Key information about House Prices Growth

    • Austria house prices dropped 2.1% YoY in Dec 2024, following a decrease of 3.5% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Sep 1987 to Dec 2024, with an average growth rate of 4.1%.
    • House price data reached an all-time high of 33.4% in Sep 1988 and a record low of -6.4% in Dec 2001.

    CEIC calculates quarterly House Prices Growth from quarterly House Price Index. Oesterreichische Nationalbank provides House Price Index with base 2000=100. 3.. House Prices Growth covers Vienna only.

  11. Jiffs house price prediction dataset

    • kaggle.com
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jifry Issadeen (2020). Jiffs house price prediction dataset [Dataset]. https://www.kaggle.com/elakiricoder/jiffs-house-price-prediction-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 9, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jifry Issadeen
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    I have previously shared a classification based dataset to classify the gender which is liked by those who are new to machine learning as it give a pretty good accuracy, which encouraged me to create a regression dataset to predict continues values. I have tried many real world datasets for regression problems which are predicting with lower accuracy and high error rate. As a beginner, I have struggled and worried why and how the dataset performs poorly. This is another main reason why I created this dataset. Although this is a made up dataset, I have considered all the features when deciding the price of the property. If you are a beginner, you would love to try this as the results are stunning..

    Content

    Since this is a populated data, I will straightaway explain the features and the label. FEATURES 1. land_size_sqm - This the total size of the land in square meters. 2. house_size_sqm - This is the area in which house is located within the land. This is measured in square meters. 3. no_of_rooms - This indicates the number of rooms available in the house. 4. no_of_bathrooms - This shows the number of total bathrooms made in the house. 5. large_living_room - This indicates whether the house includes a larger living room or not. The assumption is that all the houses contain a living room. This feature attempts to classify whether it's large or small where '1' means large and '0' means small. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 6. parking_space - This indicates whether there is a parking space or not. '1' represents the parking available while '0' represents no parking space available. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 7. front_garden - This shows whether there is a garden available in front of the house. '1' means the garden available and '0' means no garden available. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 8. swimming_pool - This shows the availability of the swimming pool at the house. 1 represents the availability of the swimming pool while 0 represents the non availability of the same. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 9. distance_to_school_km - This shows the distance from the house to the nearest school in Kilometers. 10. wall_fence - This shows whether there is a wall fence or not. '1' mean there is wall fence and '0' means no wall fence. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 11. **house_age_or_renovated **- This is either the age of the house in years or the period from the date of renovation. 12. water_front - this indicates whether the house is located in front of the water or not. 1 means waterfront and 0 means its not located near the water. However in the categorical dataset, 1 and 0 are represented with 'yes' and 'No' respectively. 13. distance_to_supermarket_km - what is the distance to the nearest supermarket in kilometers.

    LABEL property_value - This is the price of the property

    Following features are only available in the "house price dataset original v2 cleaned" and "house price dataset original v2 with categorical features" data only. 14. crime_rate - its in float and falls between 0 and 7. lesser the better 15. room_size - As the name suggests, it explains the size of the room. 0 is being 'small', 1 is being 'medium', 2 is 'large' and 3 is being 'Extra large'. However in the categorical dataset, these values are categorical and self explanatory.

    Acknowledgements

    I spent around 3 hours creating this dataset. Enjoy..

    Inspiration

    Share your notebooks to see which algorithm predicts the house price precisely.

  12. UK House Price Index: data downloads June 2021

    • gov.uk
    • s3.amazonaws.com
    Updated Aug 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2021). UK House Price Index: data downloads June 2021 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-june-2021
    Explore at:
    Dataset updated
    Aug 18, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_18_08_21" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Google Chrome is blocking downloads of our UK HPI data files (Chrome 88 onwards). Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  13. T

    United States Existing Home Sales Prices

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Existing Home Sales Prices [Dataset]. https://tradingeconomics.com/united-states/single-family-home-prices
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - May 31, 2025
    Area covered
    United States
    Description

    Single Family Home Prices in the United States increased to 422800 USD in May from 414000 USD in April of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  14. Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2022). Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (Australia, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/residential-real-estate-market-analysis
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    France, Europe, United Kingdom, Germany, Japan, United States, Mexico, Canada, Global
    Description

    Snapshot img

    Residential Real Estate Market Size 2025-2029

    The residential real estate market size is forecast to increase by USD 485.2 billion at a CAGR of 4.5% between 2024 and 2029.

    The market is experiencing significant growth, fueled by increasing marketing initiatives that attract potential buyers and tenants. This trend is driven by the rising demand for housing solutions that cater to the evolving needs of consumers, particularly in urban areas. However, the market's growth trajectory is not without challenges. Regulatory uncertainty looms large, with changing policies and regulations posing a significant threat to market stability. Notably, innovative smart home technologies, such as voice-activated assistants and energy-efficient appliances, are gaining traction, offering enhanced convenience and sustainability for homeowners.
    As such, companies seeking to capitalize on the opportunities presented by the growing the market must navigate these challenges with agility and foresight. The residential construction industry's expansion is driven by urbanization and the rising standard of living in emerging economies, including India, China, Thailand, Malaysia, and Indonesia. By staying abreast of regulatory changes and implementing innovative marketing strategies, they can effectively meet the evolving needs of consumers and maintain a competitive edge. These regulatory shifts can impact everything from property prices to financing options, making it crucial for market players to stay informed and adapt quickly.
    

    What will be the Size of the Residential Real Estate Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic housing market analysis, small flats continue to be a popular choice for both investors and first-time homebuyers, driven by affordability and urban growth. International investment in housing projects, including apartments and condominiums, remains strong, offering attractive investment returns. Real estate syndication and property management software facilitate efficient property ownership and management. Real estate loans, property insurance, and urban planning are essential components of the housing market, ensuring the development of affordable housing and addressing the needs of the middle class and upper middle class. Property disputes, property tax assessments, and real estate litigation are ongoing challenges, requiring careful attention from stakeholders.
    Property search engines streamline the process of finding the perfect property, from studio apartments to luxury homes. Real estate auctions, land banking, and nano apartments are innovative solutions in the market, while property flipping and short sales provide opportunities for savvy investors. Urban growth and community development are key trends, with a focus on sustainable, planned cities and the integration of technology, such as real estate blockchain, into the industry. Developers secure building permits, review inspection reports, and manage escrow accounts during real estate transactions. Key services include contract negotiation, dispute resolution, and tailored investment strategies for portfolio management. Financial aspects cover tax implications, estate planning, retirement planning, taxdeferred exchanges, capital gains, tax deductions, and maintaining positive cash flow for sustained returns.
    

    How is this Residential Real Estate Industry segmented?

    The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Mode Of Booking
    
      Sales
      Rental or lease
    
    
    Type
    
      Apartments and condominiums
      Landed houses and villas
    
    
    Location
    
      Urban
      Suburban
      Rural
    
    
    End-user
    
      Mid-range housing
      Affordable housing
      Luxury housing
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Mode Of Booking Insights

    The sales segment is estimated to witness significant growth during the forecast period. The sales segment dominates the global residential real estate market and will continue to dominate during the forecast period. The sales segment includes the sale of any property that is majorly used for residential purposes, such as single-family homes, condos, cooperatives, duplexes, townhouses, and multifamily residences. With the growing population and urbanization, the demand for homes is also increasing, which is the major factor driving the growth of the sales segment. Moreover, real estate firms work with developers to sel

  15. A

    ‘Paris Housing Price Prediction’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Paris Housing Price Prediction’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-paris-housing-price-prediction-8baa/latest
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Paris
    Description

    Analysis of ‘Paris Housing Price Prediction’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mssmartypants/paris-housing-price-prediction on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    This is a set of data created from imaginary data of house prices in an urban environment - Paris. I recommend using this dataset for educational purposes, for practice and to acquire the necessary knowledge. What I'm trying to do next is to create a classification dataset with same data from this dataset, I'll add a new column for class attribute ofc. Here is a classification dataset ---> classification dataset <---

    Content

    What's inside is more than just rows and columns. You can see house details listed as column names.

    Description

    All attributes are numeric variables and they are listed bellow:

    • squareMeters
    • numberOfRooms
    • hasYard
    • hasPool
    • floors - number of floors
    • cityCode - zip code
    • cityPartRange - the higher the range, the more exclusive the neighbourhood is
    • numPrevOwners - number of prevoious owners
    • made - year
    • isNewBuilt
    • hasStormProtector
    • basement - basement square meters
    • attic - attic square meteres
    • garage - garage size
    • hasStorageRoom
    • hasGuestRoom - number of guest rooms
    • price - predicted value

    Inspiration

    Idea was to create dataset that is good for regression and that gives adequate results.

    --- Original source retains full ownership of the source dataset ---

  16. T

    Hong Kong House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Hong Kong House Price Index [Dataset]. https://tradingeconomics.com/hong-kong/housing-index
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1994 - Jun 15, 2025
    Area covered
    Hong Kong
    Description

    Housing Index in Hong Kong increased to 135.60 points in June 15 from 135.57 points in the previous week. This dataset provides - Hong Kong House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  17. T

    Germany House Price Index

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). Germany House Price Index [Dataset]. https://tradingeconomics.com/germany/housing-index
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 31, 2005 - May 31, 2025
    Area covered
    Germany
    Description

    Housing Index in Germany increased to 218.58 points in May from 217.43 points in April of 2025. This dataset provides the latest reported value for - Germany House Price Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. 🏡 Global Housing Market Analysis (2015-2024)

    • kaggle.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atharva Soundankar (2025). 🏡 Global Housing Market Analysis (2015-2024) [Dataset]. https://www.kaggle.com/datasets/atharvasoundankar/global-housing-market-analysis-2015-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 18, 2025
    Dataset provided by
    Kaggle
    Authors
    Atharva Soundankar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.

    📑 Column Descriptions

    Column NameDescription
    CountryThe country where the housing market data is recorded 🌍
    YearThe year of observation 📅
    Average House Price ($)The average price of houses in USD 💰
    Median Rental Price ($)The median monthly rent for properties in USD 🏠
    Mortgage Interest Rate (%)The average mortgage interest rate percentage 📉
    Household Income ($)The average annual household income in USD 🏡
    Population Growth (%)The percentage increase in population over the year 👥
    Urbanization Rate (%)Percentage of the population living in urban areas 🏙️
    Homeownership Rate (%)The percentage of people who own their homes 🔑
    GDP Growth Rate (%)The annual GDP growth percentage 📈
    Unemployment Rate (%)The percentage of unemployed individuals in the labor force 💼
  19. Residential Real Estate Market - Forecast, Trends & Industry Analysis

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence, Residential Real Estate Market - Forecast, Trends & Industry Analysis [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Residential Real Estate Market Report is Segmented by Type (apartments and Condominiums and Landed Houses and Villas) and Geography (North America, Europe, Asia-Pacific, the Middle East and Africa, Latin America, and the Rest of the World). The Report Offers Market Sizes and Forecasts for the Residential Real Estate Market in USD for all the Above Segments.

  20. A

    ‘Delhi House Price Prediction’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘Delhi House Price Prediction’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-delhi-house-price-prediction-7ec5/latest
    Explore at:
    Dataset updated
    Jan 18, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Delhi
    Description

    Analysis of ‘Delhi House Price Prediction’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/neelkamal692/delhi-house-price-prediction on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Content

    This is not a comprehensive list, some of the attributes i left intentionally and some just couldn't extract. Dataset consists of 12 columns and 1259 rows. 6 of the features are numerical valued and rest are categorical. code for extracting Data is available at my Github account.

    Acknowledgements

    The Data has been extracted from MagicBricks (a website, provides common platform to property buyer and seller ).

    Inspiration

    I have done property price prediction on Boston Dataset, so i was wondering, if i can do it for Delhi properties too.

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Forecast house price growth in the UK 2024-2028 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
Organization logo

Forecast house price growth in the UK 2024-2028

Explore at:
Dataset updated
Jun 20, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2023
Area covered
United Kingdom
Description

Just as in many other countries, the housing market in the UK grew substantially during the coronavirus pandemic, fueled by robust demand and low borrowing costs. Nevertheless, high inflation and the increase in mortgage rates has led to house price growth slowing down. According to the forecast, 2024 is expected to see house prices decrease by ***** percent. Between 2024 and 2028, the average house price growth is projected at *** percent. A contraction after a period of continuous growth In June 2022, the UK's house price index exceeded *** index points, meaning that since 2015 which was the base year for the index, house prices had increased by ** percent. In just two years, between 2020 and 2022, the index surged by ** index points. As the market stood in December 2023, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next years. Growth is forecast to be stronger in 2024 and slow down in the period between 2025 and 2028. The rental market in London is expected to follow a similar trend, with Central London slightly outperforming Greater London.

Search
Clear search
Close search
Google apps
Main menu