50 datasets found
  1. 2011 11: Travel Time and Housing Price Maps: 390 Main Street

    • opendata.mtc.ca.gov
    • hub.arcgis.com
    Updated Nov 16, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2011). 2011 11: Travel Time and Housing Price Maps: 390 Main Street [Dataset]. https://opendata.mtc.ca.gov/documents/8fc4c0f83f484bbc8773d5a902dc261a
    Explore at:
    Dataset updated
    Nov 16, 2011
    Dataset provided by
    Metropolitan Transportation Commission
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The travel time data on this map is modeled from a 2005 transit network. The home values are as of 2000 and are expressed in year 2000 dollars. The home value estimates were created by the Association of Bay Area Governements by combining ParcelQuest real estate transaction data and real estate tax assessment data. This information can be generated for any address in the region using an interactive mapping tool available under Maps at onebayarea.org/maps.htm (Note - this tool is no longer available).

  2. House Sales in Ontario

    • kaggle.com
    Updated Oct 7, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahdy Nabaee (2016). House Sales in Ontario [Dataset]. https://www.kaggle.com/mnabaee/ontarioproperties/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 7, 2016
    Dataset provided by
    Kaggle
    Authors
    Mahdy Nabaee
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Ontario
    Description

    This dataset includes the listing prices for the sale of properties (mostly houses) in Ontario. They are obtained for a short period of time in July 2016 and include the following fields: - Price in dollars - Address of the property - Latitude and Longitude of the address obtained by using Google Geocoding service - Area Name of the property obtained by using Google Geocoding service

    This dataset will provide a good starting point for analyzing the inflated housing market in Canada although it does not include time related information. Initially, it is intended to draw an enhanced interactive heatmap of the house prices for different neighborhoods (areas)

    However, if there is enough interest, there will be more information added as newer versions to this dataset. Some of those information will include more details on the property as well as time related information on the price (changes).

    This is a somehow related articles about the real estate prices in Ontario: http://www.canadianbusiness.com/blogs-and-comment/check-out-this-heat-map-of-toronto-real-estate-prices/

    I am also inspired by this dataset which was provided for King County https://www.kaggle.com/harlfoxem/housesalesprediction

  3. a

    Median Price of Homes Sold - City

    • hub.arcgis.com
    • vital-signs-bniajfi.hub.arcgis.com
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Median Price of Homes Sold - City [Dataset]. https://hub.arcgis.com/maps/bniajfi::median-price-of-homes-sold-city
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The median home sales price is the middle value of the prices for which homes are sold (both market and private transactions) within a calendar year. The median value is used as opposed to the average so that both extremely high and extremely low prices do not distort the prices for which homes are sold. This measure does not take into account the assessed value of a property. Source: First American Real Estate Solutions (FARES) and RBIntel Years Available: 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2022, 2023

  4. f

    Data from: Geostatistical space–time mapping of house prices using Bayesian...

    • tandf.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darren K. Hayunga; Alexander Kolovos (2023). Geostatistical space–time mapping of house prices using Bayesian maximum entropy [Dataset]. http://doi.org/10.6084/m9.figshare.3160162.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Darren K. Hayunga; Alexander Kolovos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mapping spatial processes at a small scale is a challenge when observed data are not abundant. The article examines the residential housing market in Fort Worth, Texas, and builds price indices at the inter- and intra-neighborhood levels. To accomplish our objectives, we initially model price variability in the joint space–time continuum. We then use geostatistics to predict and map monthly housing prices across the area of interest over a period of 4 years. For this analysis, we introduce the Bayesian maximum entropy (BME) method into real estate research. We use BME because it rigorously integrates uncertain or secondary soft data, which are needed to build the price indices. The soft data in our analysis are property tax values, which are plentiful, publicly available, and highly correlated with transaction prices. The results demonstrate how the use of the soft data provides the ability to map house prices within a small areal unit such as a subdivision or neighborhood.

  5. F

    Real Residential Property Prices for China

    • fred.stlouisfed.org
    json
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for China [Dataset]. https://fred.stlouisfed.org/series/QCNR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 27, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Real Residential Property Prices for China (QCNR628BIS) from Q2 2005 to Q4 2024 about China, residential, HPI, housing, real, price index, indexes, and price.

  6. Annual home price appreciation in the U.S. 2024, by state

    • statista.com
    • ai-chatbox.pro
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual home price appreciation in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240802/annual-home-price-appreciation-by-state-usa/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    House prices grew year-on-year in most states in the U.S. in the third quarter of 2024. The District of Columbia was the only exception, with a decline of three percent. The annual appreciation for single-family housing in the U.S. was 0.71 percent, while in Hawaii—the state where homes appreciated the most—the increase exceeded 10 percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2024, the median sales price of a single-family home exceeded 413,000 U.S. dollars, up from 277,000 U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as 2.3 percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded 20 percent in 2024.

  7. Average residential real estate square meter prices in Europe 2023, by...

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average residential real estate square meter prices in Europe 2023, by country [Dataset]. https://www.statista.com/statistics/722905/average-residential-square-meter-prices-in-eu-28-per-country/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Europe
    Description

    The average transaction price of new housing in Europe was the highest in Norway, whereas existing homes were the most expensive in Austria. Since there is no central body that collects and tracks transaction activity or house prices across the whole continent or the European Union, not all countries are included. To compile the ranking, the source weighed the transaction prices of residential properties in the most important cities in each country based on data from their national offices. For example, in Germany, the cities included were Munich, Hamburg, Frankfurt, and Berlin. House prices have been soaring, with Sweden topping the ranking Considering the RHPI of houses in Europe (the price index in real terms, which measures price changes of single-family properties adjusted for the impact of inflation), however, the picture changes. Sweden, Luxembourg and Norway top this ranking, meaning residential property prices have surged the most in these countries. Real values were calculated using the so-called Personal Consumption Expenditure Deflator (PCE), This PCE uses both consumer prices as well as consumer expenditures, like medical and health care expenses paid by employers. It is meant to show how expensive housing is compared to the way of living in a country. Home ownership highest in Eastern Europe The home ownership rate in Europe varied from country to country. In 2020, roughly half of all homes in Germany were owner-occupied whereas home ownership was at nearly ** percent in Romania or around ** percent in Slovakia and Lithuania. These numbers were considerably higher than in France or Italy, where homeowners made up ** percent and ** percent of their respective populations.For more information on the topic of property in Europe, visit the following pages as a starting point for your research: real estate investments in Europe and residential real estate in Europe.

  8. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  9. c

    Where do people own homes and what is the home value?

    • hub.scag.ca.gov
    • hub.arcgis.com
    • +1more
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). Where do people own homes and what is the home value? [Dataset]. https://hub.scag.ca.gov/maps/5342a27bc29f49e5b8622b0504cf4f9a
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This web map shows a comparison of owner occupied housing and the median home value for counties, tracts, and block groups in the US in 2018. Yellow areas have over 50% of households occupied by the home owner. A large symbol denotes a larger median home value. The popup is configured to show the following:% Owner occupied housingCount of owner occupied housesCount of renter occupied housesTotal householdsMedian home valueHousehold income by rangeThe source of the data is Esri's 2018 demographic estimates. For more information about Esri's demographic data, visit the Updated Demographics documentation.

  10. a

    Housing Value 2022 (all geographies, statewide)

    • hub.arcgis.com
    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Housing Value 2022 (all geographies, statewide) [Dataset]. https://hub.arcgis.com/maps/57a9a53be8074818be578ddbc03c0e3f
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  11. Average sales price of houses in Germany 2012-2024, by city

    • statista.com
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average sales price of houses in Germany 2012-2024, by city [Dataset]. https://www.statista.com/statistics/1267270/average-price-of-houses-in-germany-by-city/
    Explore at:
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    The average price of detached and duplex houses in the biggest cities in Germany varied between approximately ***** euros and 10,000 euros per square meter in 2024. Housing was most expensive in Munich, where the square meter price of houses amounted to ***** euros. Conversely, Berlin was most affordable, with the square meter price at ***** euros. How have German house prices evolved? House prices maintained an upward trend for more than a decade, with 2020 and 2021 experiencing exceptionally high growth rates. In 2021, the nominal year-on-year change exceeded 10 percent. Nevertheless, the second half of 2022 saw the market slowing, with the annual percentage change turning negative for the first time in 12 years. Another way to examine the price growth is through the house price index, which uses 2015 as a base. At its peak in 2022, the German house price index measured about *** percent, which means that a house bought in 2015 would have appreciated by ** percent. Is housing affordable in Germany? Housing affordability depends greatly on income: High-income areas often tend to have more expensive housing, which does not necessarily make them unaffordable. The house price to income index measures the development of the cost of housing relative to income. In the first quarter of 2024, the index value stood at ***, meaning that since 2015, house price growth has outpaced income growth by about ** percent. Compared with the average for the euro area, this value was lower.

  12. a

    City of Dallas 2023 Housing Market Value Analysis and Displacement Risk...

    • egisdata-dallasgis.hub.arcgis.com
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Dallas GIS Services (2023). City of Dallas 2023 Housing Market Value Analysis and Displacement Risk Ratio [Dataset]. https://egisdata-dallasgis.hub.arcgis.com/maps/3998e909ccae443dac2b898aeb4ca8b9
    Explore at:
    Dataset updated
    Dec 11, 2023
    Dataset authored and provided by
    City of Dallas GIS Services
    Description

    The Market Value Analysis (MVA) is a tool to help residents and policymakers identify and understand the elements of their local real estate markets. It is an objective, data-driven tool built on local administrative data and validated with local experts. With an MVA, public officials and private actors can more precisely target intervention strategies in weak markets and support sustainable growth in stronger markets.In 2023, Reinvestment Fund completed an update to the City of Dallas MVA. The first MVA study in the City of Dallas was conducted in 2018 and a new study was needed to update information on current housing market conditions in Dallas neighborhoods.This is a map of the 2023 Housing Market Value Analysis and Displacement Risk Ratio for the City of Dallas. The map displays affordability information related to housing such as household income and house prices within the context of determined market types A-I. The map also includes data variables related to displacement risk ratio, or the likelihood for residents in a housing area to be push out, or displaced. The analysis was completed by a contractor, Reinvestment Fund. The analysis and findings are provided on the 2023 Market Value Analysis storymap.

  13. Average house price per square meter in Spain 2023, by region

    • statista.com
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price per square meter in Spain 2023, by region [Dataset]. https://www.statista.com/statistics/771975/average-house-price-per-square-meter-in-spain-by-autonomous-community/
    Explore at:
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Spain
    Description

    The average square meter price of new residential real estate in Spain was the highest in Catalonia and the Community of Madrid in 2024. In the second quarter of the year, both regions boasted home prices of over 4,000 euros per square meter. That was substantially higher than the average for the country, which amounted to 2,930 euros per square meter. Overall, house prices in Spain have been on the rise since 2016.

  14. p

    Average Resale Home Prices

    • data.peelregion.ca
    • hub.arcgis.com
    Updated Jan 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Regional Municipality of Peel (2019). Average Resale Home Prices [Dataset]. https://data.peelregion.ca/datasets/average-resale-home-prices
    Explore at:
    Dataset updated
    Jan 1, 2019
    Dataset authored and provided by
    Regional Municipality of Peel
    License

    https://data.peelregion.ca/pages/licensehttps://data.peelregion.ca/pages/license

    Area covered
    Description

    This data set provides the calculated annual average price of residential homes sold, by home type, within Peel and the area municipalities since 2005. Data is compiled from monthly data released by the Toronto Real Estate Board’s Market Watch reports.NoteAverage annual home price by type for Peel and each of the area municipalities has been calculated using monthly sales and dollar volume. For years 2005 to 2011, data was first aggregated based on TREB districts.

  15. d

    Real Estate Data | Property Listing, Sold Properties, Rankings, Agent...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr, Real Estate Data | Property Listing, Sold Properties, Rankings, Agent Datasets | Global Coverage | For Competitive Property Pricing and Investment [Dataset]. https://datarade.ai/data-products/real-estate-property-data-grepsr-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Grepsr
    Area covered
    Spain, Malaysia, Kuwait, Australia, Congo (Democratic Republic of the), Iraq, South Sudan, Tonga, Kazakhstan, Holy See
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  16. Average price for properties for sale in Milan, Italy 2024, by area

    • statista.com
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average price for properties for sale in Milan, Italy 2024, by area [Dataset]. https://www.statista.com/statistics/673039/average-price-for-properties-for-sale-in-milan-italy/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2024
    Area covered
    Italy
    Description

    In 2024, Milan boasted some of the most expensive residential real estate properties in the country. A ranking of the priciest districts of the city for residential properties showed that home buyers could expect to pay on average close to 10,780 euros per square meter in the district Centro (historical city center). In Milan, renting a dwelling also comes at a cost. The rental price in the same area amounted to nearly 31 euros per square meter in 2024. Milan, an attractive destination Milan is one of the most dynamic Italian cities. In recent years, the city was able to create jobs and expand investments in many sectors, attracting capital and talent both from Italy and from foreign countries. This growth was reflected also in the real estate market, which has proved to be the most dynamic in the country in recent years. Transactions in residential real estate in Milan increased steadily since 2012. Moreover, Milan was one of the most popular cities in Italy for residential property purchase as an investment. More tourists after Expo 2015 Hosting the Expo 2015 was a brave bet for the city. Thanks to public and private investments, Milan could carry out much-needed projects in terms of infrastructure and regeneration of some central areas of the city. In this sense, Expo 2015 also allowed the city to place itself on the map of the most popular tourist destinations in Europe and left a positive effect on the city’s tourism fluxes. International visitors have increased steadily since it was announced that the city would be the host of the global event, and continued to do so also in the years following the Expo.

  17. Median residential property price New Zealand 2025, by region

    • statista.com
    • ai-chatbox.pro
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Median residential property price New Zealand 2025, by region [Dataset]. https://www.statista.com/statistics/1028580/new-zealand-median-house-prices-by-region/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    New Zealand
    Description

    The price of residential property in New Zealand was the highest in the Auckland region in March 2025, with an average sale price of around *********** New Zealand dollars. The most populated city in the country, Auckland, has consistently reported higher house prices compared to most other regions. Buying property in New Zealand, particularly in its major cities, is expensive. The nation has one of the highest house-price-to-income ratios in the world. Auckland residential market The residential housing market in Auckland is competitive. Prices have been slowly decreasing; the Auckland region experienced an annual decrease in the average residential house price in March 2025 compared to the same month in the previous year. The price of residential property in Auckland was the highest in the North Shore City district, with an average sale price of around **** million New Zealand dollars. Home financing Due to the rising cost of real estate, an increasing number of New Zealanders who want to own their own property are taking on mortgages. Most residential mortgage lending in New Zealand went to owner-occupier borrowers, followed by first home buyers. In addition to mortgage lending, previously under the KiwiSaver HomeStart initiative, first-home buyers in New Zealand were able to apply to withdraw all or part of their KiwiSaver retirement savings to assist with purchasing a first home. Nonetheless, the scheme was discontinued in May 2024. Furthermore, even with a large initial deposit, it may take decades for many borrowers to pay off their mortgage.

  18. a

    Property Values

    • hub.arcgis.com
    • data-adcogov.opendata.arcgis.com
    • +1more
    Updated Jan 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adams County Colorado Government (2019). Property Values [Dataset]. https://hub.arcgis.com/maps/ADCOGOV::property-values
    Explore at:
    Dataset updated
    Jan 25, 2019
    Dataset authored and provided by
    Adams County Colorado Government
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Property values in Adams County, Colorado. Updated weekly. This table can be joined to the Parcels feature layer on the PARCELNB field. The standalone property tables are updated before the Parcels feature layer so there can be small discrepancies between them. For a more detailed description of this table, refer to this document: Assessor Data Descriptions

  19. C

    Property value (Sales price per m2)

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Property value (Sales price per m2) [Dataset]. https://ckan.mobidatalab.eu/dataset/jusmggrouqnb0g
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/shp(20), http://publications.europa.eu/resource/authority/file-type/htmlAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Description

    The sales price and the floor area of ​​each house sold in Amsterdam is known to the Land Registry for each address and has been supplied to the Spatial Planning and Sustainability Department via the Department of Research, Information and Statistics of the Municipality of Amsterdam for the purpose of creating the Housing Value Map. In a Geographic Information System (GIS) all transaction addresses are shown as points on the map and the price per m2 of each point is calculated (= sales price / m2 floor area). Extreme values ​​have been removed. An interpolation method, in which there must be at least 2 transaction addresses within a radius of 300 metres, creates the Property Value Cards. On this Housing Value Map, the blue areas mean that you get a lot of housing for your money there. The houses in the red areas are apparently (very) popular for aspects other than the floor space of the house: the level of facilities, the proximity of the historic centre, the public space, the building type or the living environment. The Housing Value Map is therefore an exceptionally good indication of the valuation of a neighbourhood.

  20. f

    city house info

    • figshare.com
    xlsx
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    zeng shian (2021). city house info [Dataset]. http://doi.org/10.6084/m9.figshare.14493858.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    figshare
    Authors
    zeng shian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data in this paper are divided into two main sections, which are data on the housing market and data on epidemic case information. The time span of the data sample is from December 1, 2019 to April 26, 2020.The original data of the housing market aspect such as the second-hand house price index in Wuhan and the surrounding provincial capital cities were obtained from Chain Home and Baidu Maps. Among them, there are 53,541 valid records of residential transactions in second-hand neighborhoods, with a final total of 347,720 after data cleaning (5582 in Wuhan; 5710 in Hefei; 7988 in Xi'an; 2066 in Changsha; 5910 in Zhengzhou; and 7464 in Chongqing).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MTC/ABAG (2011). 2011 11: Travel Time and Housing Price Maps: 390 Main Street [Dataset]. https://opendata.mtc.ca.gov/documents/8fc4c0f83f484bbc8773d5a902dc261a
Organization logo

2011 11: Travel Time and Housing Price Maps: 390 Main Street

Explore at:
Dataset updated
Nov 16, 2011
Dataset provided by
Metropolitan Transportation Commission
Authors
MTC/ABAG
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

The travel time data on this map is modeled from a 2005 transit network. The home values are as of 2000 and are expressed in year 2000 dollars. The home value estimates were created by the Association of Bay Area Governements by combining ParcelQuest real estate transaction data and real estate tax assessment data. This information can be generated for any address in the region using an interactive mapping tool available under Maps at onebayarea.org/maps.htm (Note - this tool is no longer available).

Search
Clear search
Close search
Google apps
Main menu