100+ datasets found
  1. ACS Median Household Income Variables - Centroids

    • gis-for-racialequity.hub.arcgis.com
    • places-lincolninstitute.hub.arcgis.com
    • +4more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Centroids [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/cab3fe0ee8304888a47a58355a472904
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  2. a

    ACS Median Household Income Variables - Boundaries

    • sdgs.amerigeoss.org
    Updated Oct 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online at UCLA (2023). ACS Median Household Income Variables - Boundaries [Dataset]. https://sdgs.amerigeoss.org/datasets/1d213b7a1790449fab63fe163290ea84
    Explore at:
    Dataset updated
    Oct 12, 2023
    Dataset authored and provided by
    GIS Online at UCLA
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 8, 2022National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2021 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  3. p

    Household Income and Expenditure Survey 2006 - Nauru

    • microdata.pacificdata.org
    Updated Jan 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nauru Bureau of Statistics (2020). Household Income and Expenditure Survey 2006 - Nauru [Dataset]. https://microdata.pacificdata.org/index.php/catalog/729
    Explore at:
    Dataset updated
    Jan 20, 2020
    Dataset authored and provided by
    Nauru Bureau of Statistics
    Time period covered
    2006
    Area covered
    Nauru
    Description

    Abstract

    The survey was conducted during December 2006, following an initial mini census listing exercise which was conducted about two months earlier in late September 2006. The objectives of the HIES were as follows: a) Provide information on income and expenditure distribution within the population; b) Provide income estimates of the household sector for the national accounts; c) Provide data for the re-base on the consumer price index; d) Provide data for the analysis of poverty and hardship.

    Geographic coverage

    National coverage: whole island was covered for the survey.

    Analysis unit

    • Household;
    • Individual.

    Universe

    The survey covered all private households on the island of Nauru. When the survey was in the field, interviewers were further required to reduce the scope by removing those households which had not been residing in Nauru for the last 12 months and did not intend to stay in Nauru for the next 12 months. Persons living in special dwellings (Hospital, Prison, etc) were not included in the survey.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample size adopted for the survey was 500 households which allowed for expected sample loss, whilst still maintaining a suitable responding sample for the analysis.

    Before the sample was selected, the population was stratified by constituency in order to assist with the logistical issues associated with the fieldwork. There were eight constituencies in total, along with "Location" which stretches across the districts of Denigamodu and Aiwo, forming nine strata in total. Although constituency level analysis was not a priority for the survey, sample sizes within each stratum were kept to a minimum of 40 households, to enable some basic forms of analysis at this level if required.

    The sample selection procedure within each stratum was then to sort each household on the frame by household size (number of people), and then run a systematic skip through the list in order to achieve the desirable sample size.

    Sampling deviation

    No deviations from the sample design took place.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey schedules adopted for the Household Income and Expenditure Survey (HIES) included the following: · Expenditure questionnaire; · Income questionnaire; · Miscellaneous questionnaire; · Diary (x2).

    Whilst a Household Control Form collecting basic demographics is also normally included with the survey, this wasn't required for this HIES as this activity took place for all households in the mini census.

    Information collected in the four schedules covered the following: -Expenditure questionnaire: Covers basic details about the dwelling structure and its access to things like water and sanitation. It was also used as the vehicle to collect expenditure on major and infrequent expenditures incurred by the household. -Income questionnaire: Covers each of the main types of household income generated by the household such as wages and salaries, business income and income from subsistence activities. -Miscellaneous questionnaire: Covers topics relating to health access, labour force status and education. -Diary: Covers all day to day expenditures incurred by the household, consumption of items produced by the household such as fish and crops, and gifts both received and given by the household.

    All questionnaires are provided as External Resources.

    Cleaning operations

    There were 3 phases to the editing process for the 2006 Household Income and Expenditure Survey (HIES) of Nauru which included: 1. Data Verification operations; 2. Data Editing operations; 3. Data Auditing operations.

    The software used for data editting is CSPro 3.0. After each batch is completed the supervisor should check that all person details have been entered from the household listing form (HCF) and should review the income and expenditure questionnaires for each batch ensuring that all items have been entered correctly. Any omitted or incorrect items should be entered into the system. The supervisor is required to perform outlier checks (large or small values) on the batched diary data by calculating unit price (amount/quantity) and comparing prices for each item. This is to be conducted by loading the data into Excel files and sorting data by unit price for each item. Any changes to prices or quantities will be made on the batch file.

    For more information on what each phase entailed go the document HIES Processing Instructions attached to this documentation.

    Response rate

    The survey response rates were a lot lower than expected, especially in some districts. The district of Aiwo, Uaboe and Denigomodu had the lowest response rates with 16.7%, 20.0% and 34.8% respectively. The area of Location was also extremely low with a responses rate of 32.2%. On a more positive note, the districts of Yaren, Ewa, Anabar, Ijuw and Anibare all had response rates at 80.0% or better.

    The major contributing factor to the low response rates were households refusing to take part in the survey. The figures for responding above only include fully responding households, and given there were many partial responses, this also brought the values down. The other significant contributing factor to the low response rates was the interviewers not being able to make contact with the household during the survey period.

    Unfortunately, not only do low response rates often increase the sampling error of the survey estimates, because the final sample is smaller, it will also introduce response bias into the final estimates. Response bias takes place when the households responding to the survey possess different characteristics to the households not responding, thus generating different results to what would have been achieved if all selected households responded. It is extremely difficult to measure the impact of the non-response bias, as little information is generally known about the non-responding households in the survey. For the Nauru 2006 HIES however, it was noted during the fieldwork that a higher proportion of the Chinese population residing in Nauru were more likely to not respond. Given it is expected their income and expenditure patterns would differ from the rest of the population, this would contribute to the magnitude of the bias.

    Below is the list of all response rates by district: -Yaren: 80.5% -Boe: 70% -Aiwo: 16.7% -Buada: 62.5% -Denigomodu: 34.8% -Nibok: 68.4% -Uaboe: 20% -Baitsi: 47.8% -Ewa: 80% -Anetan: 76.5% -Anabar: 81.8% -Ijuw: 85.7% -Anibare: 80% -Meneng: 64.3% -Location: 32.2% -TOTAL: 54.4%

    Sampling error estimates

    To determine the impact of sampling error on the survey results, relative standard errors (RSEs) for key estimates were produced. When interpreting these results, one must remember that these figures don't include any of the non-sampling errors discussed in other sections of this documentation

    To also provide a rough guide on how to interpret the RSEs provided in the main report, the following information can be used:

    Category  Description
    RSE < 5%  Estimate can be regarded as very reliable
    5% < RSE < 10% Estimate can be regarded as good and usable
    10% < RSE < 25% Estimate can be considered usable, with caution
    RSE > 25%  Estimate should only be used with extreme caution
    

    The actual RSEs for the key estimates can be found in Section 4.1 of the main report

    As can be seen from these tables, the estimates for Total Income and Total Expenditure from the Household Income and Expenditure Survey (HIES) can be considered to be very good, from a sampling error perspective. The same can also be said for the Wage and Salary estimate in income and the Food estimate in expenditure, which make up a high proportion of each respective group.

    Many of the other estimates should be used with caution, depending on the magnitude of their RSE. Some of these high RSEs are to be expected, due to the expected degree of variability for how households would report for these items. For example, with Business Income (RSE 56.8%), most households would report no business income as no household members undertook this activity, whereas other households would report large business incomes as it's their main source of income.

    Data appraisal

    Other than the non-response issues discussed in this documentation, other quality issues were identified which included: 1) Reporting errors Some of the different aspects contributing to the reporting errors generated from the survey, with some examples/explanations for each, include the following:

    a) Misinterpretation of survey questions: A common mistake which takes place when conducting a survey is that the person responding to the questionnaire may interpret a question differently to the interviewer, who in turn may have interpreted the question differently to the people who designed the questionnaire. Some examples of this for a Household Income and Expenditure Survey (HIES) can include people providing answers in dollars and cents, instead of just dollars, or the reference/recall period for an “income” or “expenditure” is misunderstood. These errors can often see reported amounts out by a factor of 10 or even 100, which can have major impacts on final results.

    b) Recall problems for the questionnaire information: The majority of questions in both of the income and expenditure questionnaires require the respondent to recall what took place over a 12 month period. As would be expected, people will often forget what took place up to 12 months ago so some

  4. ACS Median Household Income Variables - Boundaries

    • gis-fema.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +4more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://gis-fema.hub.arcgis.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  5. U.S household income shares of quintiles 1970-2023

    • statista.com
    • ai-chatbox.pro
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S household income shares of quintiles 1970-2023 [Dataset]. https://www.statista.com/statistics/203247/shares-of-household-income-of-quintiles-in-the-us/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    About 50.4 percent of the household income of private households in the U.S. were earned by the highest quintile in 2023, which are the upper 20 percent of the workers. In contrast to that, in the same year, only 3.5 percent of the household income was earned by the lowest quintile. This relation between the quintiles is indicative of the level of income inequality in the United States. Income inequalityIncome inequality is a big topic for public discussion in the United States. About 65 percent of U.S. Americans think that the gap between the rich and the poor has gotten larger in the past ten years. This impression is backed up by U.S. census data showing that the Gini-coefficient for income distribution in the United States has been increasing constantly over the past decades for individuals and households. The Gini coefficient for individual earnings of full-time, year round workers has increased between 1990 and 2020 from 0.36 to 0.42, for example. This indicates an increase in concentration of income. In general, the Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing. Income distribution is also affected by region. The state of New York had the widest gap between rich and poor people in the United States, with a Gini coefficient of 0.51, as of 2019. In global comparison, South Africa led the ranking of the 20 countries with the biggest inequality in income distribution in 2018. South Africa had a score of 63 points, based on the Gini coefficient. On the other hand, the Gini coefficient stood at 16.6 in Azerbaijan, indicating that income is widely spread among the population and not concentrated on a few rich individuals or families. Slovenia led the ranking of the 20 countries with the greatest income distribution equality in 2018.

  6. p

    Household Income and Expenditure Survey 2023 - Kiribati

    • microdata.pacificdata.org
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiribati National Statistics Office (2025). Household Income and Expenditure Survey 2023 - Kiribati [Dataset]. https://microdata.pacificdata.org/index.php/catalog/881
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Kiribati National Statistics Office
    Time period covered
    2023 - 2024
    Area covered
    Kiribati
    Description

    Abstract

    The purpose of the Household Income and Expenditure Survey (HIES) survey is to obtain information on the income, consumption pattern, incidence of poverty, and saving propensities for different groups of people in Kiribati. This information will be used to guide policy makers in framing socio-economic developmental policies and in initiating financial measures for improving economic conditions of the people.

    Some more specific outputs from the survey are listed below: a) To obtain expenditure weights and other useful data for the revision of the consumer price index; b) To supplement the data available for use in compiling official estimates of household accounts in the systems of national accounts; c) To supply basic data needed for policy making in connection with social and economic planning; d) To provide data for assessing the impact on household living conditions of existing or proposed economic and social measures, particularly changes in the structure of household expenditures and in household consumption; e) To gather information on poverty lines and incidence of poverty throughout Kiribati.

    Geographic coverage

    National coverage and regional island groups (Northern Gilberts, South Tarawa, Central Giberts, Southern Gilberts, Linix).

    Analysis unit

    Household and individual

    Universe

    The survey covered all persons resident in private households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey scope of the 2023/24 Household Income and Expenditure Survey (HIES) was all occupied private households listed from the 2023 household listing conducted by Kiribati National Statistics Office (KNSO). The listing was intended to update the boundaries of PSUs (Primary Sampling Units, e.g. enumeration areas) with the location of occupied dwellings for survey purposes. There were no islands or PSUs excluded from the random selection in the sample design of the 2023/24 Kiribati HIES. The sample was designed to produce robust estimates on household's expenditure and income patterns at the island group levels, urban and rural areas and national level. The sample size was computed using the performance of the previous 2019 HIES at the island groups level. A two-stage, stratified sampling approach was adopted where: - Enumeration areas were the PSUs and randomly selected with probability proportional to their size in the first stage. - Households were randomly selected using simple random sampling within each selected PSU.

    A total of 190 PSUs where selected, with a cluster size of 12 households (list A to interview in priority). The expected sample size was then 2,280 complete interviews. To achieve this objective, the sample size has been increased by additional 6 households (list B in case of replacement) within each selected PSU to address non-response. The main reason for non-response was the absence or the unavailability of the household members at the time of the interview.

    Overall, 2,418 interviews were successfully completed, which is more that was expected. This high completion rate (106%) is due to the following factors: - Replacement procedure: that allowed interviewers to replace non-responding households with households selected in list B - Change of instructions during field work: KNSO did change the procedure and halfway through field work, field teams were supposed to increase cluster size by including replacements. It resulted in a higher final cluster size (12,7 households compared to 12 expected).

    From round 24 field work instructions changes and fieldworkers were supposed to increase the cluster size by adding to the selected households the replacement ones. From round 24 to round 34, the average cluster size was 14.2.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaires were developped both in English and in I-Kiribati.

    The questionnaire was administered through face-to-face interviews, with data entry conducted using Computer-Assisted Personal Interviewing (CAPI) software. The questionnaire was divided into 2 main sections made of the following modules: · Individual sections: o Demographic characteristics o Education o Health (including functional difficulties) o Communication o Alcohol, tobacco and kava o Other individual expenses o Labour force o Food away from home (FAFH) o Remittances o Social protection o Migrant workers · Household level modules: o Food recall o Non-food recall o Partaker o Dwelling characteristics o Assets o Home maintenance o Vehicles o International trips o Domestic trips o Household services o Financial support o Other household expenditure o Ceremonies o Food insecurity o Fisheries o Livestock o Agriculture o Handicraft and home-processed food o Deprivation o Natural disasters & climate change impacts

    Cleaning operations

    Data editing was done using the Stata software. A total of 10 Stata do-files were created to clean the Kiribati Household Income and Expenditue Survey data.

  7. i

    Household Income and Expenditure Survey 2006 - Nauru

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nauru Bureau of Statistics (2019). Household Income and Expenditure Survey 2006 - Nauru [Dataset]. https://dev.ihsn.org/nada/catalog/study/NRU_2006_HIES_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Nauru Bureau of Statistics
    Time period covered
    2006
    Area covered
    Nauru
    Description

    Abstract

    The purpose of the HIES survey is to obtain information on the income, consumption pattern, incidence of poverty, and saving propensities for different groups of people in Nauru. This information will be used to guide policy makers in framing socio-economic developmental policies and in initiating financial measures for improving economic conditions of the people.

    Some more specific outputs from the survey are listed below: a) To obtain expenditure weights and other useful data for the revision of the consumer price index; b) To supplement the data available for use in compiling official estimates of household accounts in the systems of national accounts; c) To supply basic data needed for policy making in connection with social and economic planning; d) To provide data for assessing the impact on household living conditions of existing or proposed economic and social measures, particularly changes in the structure of household expenditures and in household consumption; e) To gather information on poverty lines and incidence of poverty throughout Nauru.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Person
    • Expenditure Commodity

    Universe

    The survey covered all private households on the island of Nauru. When the survey was in the field, interviewers were further required to reduce the scope by removing those households which had not been residing in Nauru for the last 12 months and did not intend to stay in Nauru for the next 12 months.

    Persons living in special dwellings (Hospital, Prison, etc) were not included in the survey.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample size adopted for the survey was 500 households which allowed for expected sample loss, whilst still maintaining a suitable responding sample for the analysis.

    Before the sample was selected, the population was stratified by constituency in order to assist with the logistical issues associated with the fieldwork. There were eight constituencies in total, along with "Location" which stretches across the districts of Denigamodu and Aiwo, forming nine strata in total. Although constituency level analysis was not a priority for the survey, sample sizes within each stratum were kept to a minimum of 40 households, to enable some basic forms of analysis at this level if required.

    The sample selection procedure within each stratum was then to sort each household on the frame by household size (number of people), and then run a systematic skip through the list in order to achieve the desirable sample size.

    Sampling deviation

    No deviations from the sample design took place.

    Mode of data collection

    Face-to-face [f2f] for questionnaires, self-enumeration for the diaries

    Research instrument

    The survey schedules adopted for the HIES included the following: · Expenditure questionnaire · Income questionnaire · Miscellaneous questionnaire · Diary (x2)

    Whilst a Household Control Form collecting basic demographics is also normally included with the survey, this wasn't required for this HIES as this activity took place for all households in the mini census.

    Information collected in the four schedules covered the following:

    Expenditure questionnaire: Covers basic details about the dwelling structure and its access to things like water and sanitation. It was also used as the vehicle to collect expenditure on major and infrequent expenditures incurred by the household.

    Income questionnaire: Covers each of the main types of household income generated by the household such as wages and salaries, business income and income from subsistence activities.

    Miscellaneous questionnaire: Covers topics relating to health access, labour force status and education.

    Diary: Covers all day to day expenditures incurred by the household, consumption of items produced by the household such as fish and crops, and gifts both received and given by the household.

    Cleaning operations

    There were 3 phases to the editing process for the 2006 Nauru HIES which included: 1. Data Verification operations 2. Data Editing operations 3. Data Auditing operations

    For more information on what each phase entailed go the document HIES Processing Instructions attached to this documentation.

    Response rate

    The survey response rates were a lot lower than expected, especially in some districts. The district of Aiwo, Uaboe and Denigomodu had the lowest response rates with 16.7%, 20.0% and 34.8% respectively. The area of Location was also extremely low with a responses rate of 32.2%. On a more positive note, the districts of Yaren, Ewa, Anabar, Ijuw and Anibare all had response rates at 80.0% or better.

    The major contributing factor to the low response rates were households refusing to take part in the survey. The figures for responding above only include fully responding households, and given there were many partial responses, this also brought the values down. The other significant contributing factor to the low response rates was the interviewers not being able to make contact with the household during the survey period.

    Unfortunately, not only do low response rates often increase the sampling error of the survey estimates, because the final sample is smaller, it will also introduce response bias into the final estimates. Response bias takes place when the households responding to the survey possess different characteristics to the households not responding, thus generating different results to what would have been achieved if all selected households responded. It is extremely difficult to measure the impact of the non-response bias, as little information is generally known about the non-responding households in the survey. For the Nauru 2006 HIES however, it was noted during the fieldwork that a higher proportion of the Chinese population residing in Nauru were more likely to not respond. Given it is expected their income and expenditure patterns would differ from the rest of the population, this would contribute to the magnitude of the bias.

    Sampling error estimates

    To determine the impact of sampling error on the survey results, relative standard errors (RSEs) for key estimates were produced. When interpreting these results, one must remember that these figures don't include any of the non-sampling errors discussed in other sections of this documentation

    To also provide a rough guide on how to interpret the RSEs provided in the main report, the following information can be used:

    Category  Description
    RSE < 5%  Estimate can be regarded as very reliable
    5% < RSE < 10% Estimate can be regarded as good and usable
    10% < RSE < 25% Estimate can be considered usable, with caution
    RSE > 25%  Estimate should only be used with extreme caution
    

    The actual RSEs for the key estimates can be found in Section 4.1 of the main report

    As can be seen from these tables, the estimates for Total Income and Total Expenditure from the HIES can be considered to be very good, from a sampling error perspective. The same can also be said for the Wage and Salary estimate in income and the Food estimate in expenditure, which make up a high proportion of each respective group.

    Many of the other estimates should be used with caution, depending on the magnitude of their RSE. Some of these high RSEs are to be expected, due to the expected degree of variability for how households would report for these items. For example, with Business Income (RSE 56.8%), most households would report no business income as no household members undertook this activity, whereas other households would report large business incomes as it's their main source of income.

    Data appraisal

    Other than the non-response issues discussed in this documentation, other quality issues were identified which included: 1) Reporting errors Some of the different aspects contributing to the reporting errors generated from the survey, with some examples/explanations for each, include the following:

    a) Misinterpretation of survey questions: A common mistake which takes place when conducting a survey is that the person responding to the questionnaire may interpret a question differently to the interviewer, who in turn may have interpreted the question differently to the people who designed the questionnaire. Some examples of this for a HIES can include people providing answers in dollars and cents, instead of just dollars, or the reference/recall period for an “income” or “expenditure” is misunderstood. These errors can often see reported amounts out by a factor of 10 or even 100, which can have major impacts on final results.

    b) Recall problems for the questionnaire information: The majority of questions in both of the income and expenditure questionnaires require the respondent to recall what took place over a 12 month period. As would be expected, people will often forget what took place up to 12 months ago so some information will be forgotten.

    c) Intentional under-reporting for some items: For whatever reasons, a household may still participate in a survey but not be willing to provide accurate responses for some questions. Examples for a HIES include people not fully disclosing their total income, and intentionally under-reporting expenditures on items such as alcohol and tobacco.

    d) Accidental under-reporting in the household diaries: Although the two diaries are left with the household for a period of two weeks, it is easy for the household to forget to enter all expenditures throughout this period - this problem most likely increases as the two

  8. l

    Household Income and Expenditure Survey 2016 - Liberia

    • microdata.lisgislr.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liberia Institute for Statistics and Geo-Information Services (2024). Household Income and Expenditure Survey 2016 - Liberia [Dataset]. https://microdata.lisgislr.org/index.php/catalog/29
    Explore at:
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Liberia Institute for Statistics and Geo-Information Services
    Time period covered
    2016 - 2017
    Area covered
    Liberia
    Description

    Abstract

    The main purpose of the Household Income Expenditure Survey (HIES) 2016 was to offer high quality and nationwide representative household data that provided information on incomes and expenditure in order to update the Consumer Price Index (CPI), improve National Accounts statistics, provide agricultural data and measure poverty as well as other socio-economic indicators. These statistics were urgently required for evidence-based policy making and monitoring of implementation results supported by the Poverty Reduction Strategy (I & II), the AfT and the Liberia National Vision 2030. The survey was implemented by the Liberia Institute of Statistics and Geo-Information Services (LISGIS) over a 12-month period, starting from January 2016 and was completed in January 2017. LISGIS completed a total of 8,350 interviews, thus providing sufficient observations to make the data statistically significant at the county level. The data captured the effects of seasonality, making it the first of its kind in Liberia. Support for the survey was offered by the Government of Liberia, the World Bank, the European Union, the Swedish International Development Corporation Agency, the United States Agency for International Development and the African Development Bank. The objectives of the 2016 HIES were:

    1. Update the Consumer Price Index (CPI): To obtain a new set of weights for the basket of goods and services that upgrade the Monrovia Consumer Price Index (MCPI) and the National Consumer Price Index (NCPI) and to revise the CPI basket of goods and services in Liberia to reflect the current consumption pattern of residence.
    2. Improve National Accounts Statistics: To get information on annual household expenditure patterns in order to update the household component of the National Accounts.
    3. Measure Poverty: To prepare robust poverty indices that enable the understanding of poverty dynamics across the country and of the factors influencing them.
    4. Improve Agricultural Statistics: To obtain nationally representative and policy relevant agricultural statistics in order to undertake in-depth analysis of agricultural households.
    5. Capture Socio-economic Impact of Ebola Virus Disease (EVD): To obtain a post-EVD dataset which allows for an in-depth analysis of the socioeconomic impact of EVD on households.
    6. Benchmark Agenda for Transformation Indicators: To provide an update on selected socioeconomic indicators used to benchmark the government’s policies embedded within the Agenda for Transformation.
    7. Develop Statistical Capacity: Emphasize capacity building and development of sustainable statistical systems through every stage of the project to produce accurate and timely information about Liberia.

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The original sample design for the HIES exploited two-phased clustered sampling methods, encompassing a nationally representative sample of households in every quarter and was obtained using the 2008 National Housing and Population Census sampling frame. The procedures used for each sampling stage are as follows:
    i. First stage
    Selection of sample EAs. The sample EAs for the 2016 HIES were selected within each stratum systematically with Probability Proportional to Size from the ordered list of EAs in the sampling frame. They are selected separately for each county by urban/rural stratum. The measure of size for each EA was based on the number of households from the sampling frame of EAs based on the 2008 Liberia Census. Within each stratum the EAs were ordered geographically by district, clan and EA codes. This provided implicit geographic stratification of the sampling frame.

    ii. Second stage
    Selection of sample households within a sample EA. A random systematic sample of 10 households were selected from the listing for each sample EA. Using this type of table, the supervisor only has to look up the total number of households listed, and a specific systematic sample of households is identified in the corresponding row of the table.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    There were three questionnaires administered for this survey: 1. Household and Individual Questionnaire 2. Market Price Questionnaire 3. Agricultural Recall Questionnaire

    Cleaning operations

    The data entry clerk for each team, using data entry software called CSPro, entered data for each household in the field. For each household, an error report was generated on-site, which identified key problems with the data collected (outliers, incorrect entries, inconsistencies with skip patterns, basic filters for age and gender specific questions etc.). The Supervisor along with the Data Entry Clerk and the Enumerator that collected the data reviewed these errors. Callbacks were made to households if necessary to verify information and rectify the errors while in that EA.

    Once the data were collected in each EA, they were sent to LISGIS headquarters for further processing along with EA reports for each area visited. The HIES Technical committee converted the data into STATA and ran several consistency checks to manage overall data quality and prepared reports to identify key problems with the data set and called the field teams to update them about the same. Monthly reports were prepared by summarizing observations from data received from the field alongside statistics on data collection status to share with the field teams and LISGIS Management.

  9. ACS Household Income Distribution Variables - Boundaries

    • gis-fema.hub.arcgis.com
    • atlas-connecteddmv.hub.arcgis.com
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Household Income Distribution Variables - Boundaries [Dataset]. https://gis-fema.hub.arcgis.com/maps/d5aa55217237424cae44ce9f43157e7d
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows household income ranges and cutoffs. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households that make under $75,000 annually. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19001 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  10. i

    Household Income, Consumption and Expenditure Survey 1999-2000 - World Bank...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Authority (CSA) (2019). Household Income, Consumption and Expenditure Survey 1999-2000 - World Bank SHIP Harmonized Dataset - Ethiopia [Dataset]. http://catalog.ihsn.org/catalog/2604
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistical Authority (CSA)
    Time period covered
    1999 - 2000
    Area covered
    Ethiopia
    Description

    Abstract

    Survey based Harmonized Indicators (SHIP) files are harmonized data files from household surveys that are conducted by countries in Africa. To ensure the quality and transparency of the data, it is critical to document the procedures of compiling consumption aggregation and other indicators so that the results can be duplicated with ease. This process enables consistency and continuity that make temporal and cross-country comparisons consistent and more reliable.

    Four harmonized data files are prepared for each survey to generate a set of harmonized variables that have the same variable names. Invariably, in each survey, questions are asked in a slightly different way, which poses challenges on consistent definition of harmonized variables. The harmonized household survey data present the best available variables with harmonized definitions, but not identical variables. The four harmonized data files are

    a) Individual level file (Labor force indicators in a separate file): This file has information on basic characteristics of individuals such as age and sex, literacy, education, health, anthropometry and child survival. b) Labor force file: This file has information on labor force including employment/unemployment, earnings, sectors of employment, etc. c) Household level file: This file has information on household expenditure, household head characteristics (age and sex, level of education, employment), housing amenities, assets, and access to infrastructure and services. d) Household Expenditure file: This file has consumption/expenditure aggregates by consumption groups according to Purpose (COICOP) of Household Consumption of the UN.

    Geographic coverage

    National

    Analysis unit

    • Individual level for datasets with suffix _I and _L
    • Household level for datasets with suffix _H and _E

    Universe

    The survey covered all de jure household members (usual residents).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 1999/2000 Household Income, Consurnption, and Expendi.ture Survey covered both the urban and the sedentary rural parts of the country. The survey has not covered six zones in Somalia Region and two zones in Afar Region that are inhabited mainly by nomadic population. For the purpose of the survey, the country was divided into three categories . That is, the rural parts of the country and the urban areas that were divided into two broad categories taking into account sizes of their population. Category I: Rural parts of nine Regional States and two administrative regions were grouped in this category each of which were the survey dornains (reporting levels). These regions are Tigrai,Afar, Amhara, Oromia, Sornalia, Eenishangul-Gunuz, SNNP,Gambela, Flarari, Addis Ababa and Dire Dawa.

    Category II: All Regional capitals and five major urban centers of the country were grouped in this category. Each of the urban centers in this category was the survey domain (reporting level) for which separate survey results for rnajor survey characteristics were reported.

    Category III: Urban centers in the country other than the urban centers in category II were grouped in this category and formed a single reporting level. Other than the reporting levels defined in category II and category III one additional domain, namely total urban (country level) can be constructed by eombining the basic domains defined in the two categories. All in all 35'basie rural and urban domains (reporting levels) were defined for the survey. In addition to the above urban and rural domains, survey results are to be reported at regional and eountry levels by aggregating the survey results for the conesponding urban and rural areas. Definition of the survey dornains was based on both technical and resource considerations. More specifically, sample size for the domains were determined to enable provision of major indicators with reasonable precision subject to the resources that were available for the survey.

    Selection Scheme and Sample Size in Each Category CategoryI : A stratified two-stage sample design was used to select the sample in which the primary sampling units (PSUs) were EAs. Sample enumeration areas( EAs) from each domain were selected using systematic sampling that is probability proportional to the size being number of households obtained from the 1994 population and housing census.A total of 722 EAs were selected from the rural parts of the country. Within each sample EA a fresh list of households was prepared at the beginning of the survey's field work and for the administration of the survey questionnaire 12 households per sample EA for rural areas were systematically selected.

    Category II: In this category also,a stratified two-stage sample design was used to select the sample. Here a strata constitutes all the "Regional State Capitals" and the five "Major Urban Centers" in the country and are grouped as a strata in this category. The primary sampling units (PSUs) are the EA's in the Regional State Capitals and the five Major Urban Centers and excludes the special EAs (non-conventional households). Sample enumeration areas( EAs) from each strata were selected using systematic sampling probability proportional to size, size being number of households obtained from the 1994 population and housing census. A total of 373 EAs were selected from this domain of study. Within each sample EAs a fresh list of households was prepared at the beginning of the survey's field work and for the administration of the questionnaire 16 household per sample EA were systematically selected-

    Category III: Three-stage stratified sample design was adopted to select the sample from domains in category III. The PSUs were other urban centers selected using systematic sampling that is probability proportional to size; size being number of households obtained from the 1994 population and housing census. The secondary sampling units (SSUs) were EAs which were selected using systematic sampling that is probability proportional to size; size being number of households obtained from the 1994 population and housing census. A total of 169 sample EAs were selected from the sample of other urban centers and was determined by proportional allocation to their size of households from the 1994 census. Ultimately, 16 households within each of the sample EAs were selected systematically from a fresh list of households prepared at the beginning of the survey's fieldwork for the administration of the survey questionnaire.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Household Income, Consumption and Expenditure Survey questionnaire contains the following forms: - Form 1: Area Identification and Household Characteristics - Form 2A: Quantity and value of weekly consumption of food and drinks consumed at home and tobacco/including quantity purchased, own produced, obtained, etc for first and second week. - Form 2B: Quantity and value of weekly consumption of food and drinks consumed at home and tobacco/including quantity purchased, own produced, obtained, etc for third and fourth week . - Form 3A: All transaction (income, expenditure and consumption) for the first and second weeks except what is collected in Forms 2A and 2B - Form 3B: All transaction (income, expenditure and consumption) for the third and fourth weeks except what is collected in Forms 2A and 2B - Form 4: All transaction (expenditure and consumption) for last 6 months for Household expenditure on some selected item groups - Form 5: Cash income and receipts received by household and type of tenure. The survey questionnaire is provided as external resource.

  11. p

    Household Income and Expenditure Survey 2013-2014 - Palau

    • microdata.pacificdata.org
    Updated Mar 23, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning and Statistics (2020). Household Income and Expenditure Survey 2013-2014 - Palau [Dataset]. https://microdata.pacificdata.org/index.php/catalog/740
    Explore at:
    Dataset updated
    Mar 23, 2020
    Dataset authored and provided by
    Office of Planning and Statistics
    Time period covered
    2013 - 2014
    Area covered
    Palau
    Description

    Abstract

    The purpose of the Household Income and Expenditure Survey (HIES) survey is to obtain information on the income, consumption pattern, incidence of poverty, and saving propensities for different groups of people in Palau. This information will be used to guide policy makers in framing socio-economic developmental policies and in initiating financial measures for improving economic conditions of the people.

    Some more specific outputs from the survey are listed below:

    a) To obtain expenditure weights and other useful data for the revision of the consumer price index; b) To supplement the data available for use in compiling official estimates of household accounts in the systems of national accounts; c) To supply basic data needed for policy making in connection with social and economic planning, including producing as many of Palau's National Minimum Development Indicators (NMDI's) as possible; d) To provide data for assessing the impact on household living conditions of existing or proposed economic and social measures, particularly changes in the structure of household expenditures and in household consumption; e) To gather information on poverty lines and incidence of poverty throughout Palau.

    Geographic coverage

    National Coverage, excluding Sonsorol and Hatohobei. Urban and Rural.

    Analysis unit

    • Households;
    • Individuals.

    Universe

    All private households and group quarters (people living in Work dormitories, as it is an important aspect of the subject matter focused on in this survey, and not addressed elsewhere).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used was the 2012 Palau census, which provided population figures for everyone living in both private households and group quarters (e.g. worker barracks, school dormitories, prison). The sampling selection was done separately in private dwellings and group quarters.

    It is an accepted practice for the Household Income and Expenditure Survey (HIES) to cover all living quarters regarded as private dwellings, and the Palau 2013/14 HIES will follow this recommendation.

    For group quarters it is also recommended to exclude the prison, as it is not considered appropriate to include such institutions in a survey such as HIES.

    A decision as to whether the remaining group quarters should be included is based on the following criteria:

    1) Ease in accessing and covering them in a survey such as HIES 2) Relevance to the subject matter of the survey 3) Whether their impact on the subject matter is mostly covered already

    Under these criteria, the following recommendations are made: -School/college dormitories: Will exclude from HIES as these individuals will be covered in the households from which they came (if selected) -Work dormitories: Aim to include in the HIES as they are an important aspect of the subject matter focused on in this survey, and not addressed elsewhere -Live aboard: Will exclude due to the movement of such vehicles, and the minimal impact they may have on such a survey -Convents/religious quarters: Will exclude based on their expected minimum impact on the survey subject matter

    NB: Given students in dorms are expected to have a high portion of their income and expenses covered in their original household of origin, and there were no religious group quarters identified during the census, only persons in the prison and living aboard are expected to be excluded from the survey. These people account for 81 out of 2,322 group quarters residents (only 3.6%).

    Although the response rates were down in the 2006 HIES, with a smaller more experienced team working over 12 months, it is expected there will be improvements in this area. However, the expected sample loss of 10 per cent was probably too ambitious, and given the actual rate ended up at 287/1,063 = 27 per cent, it is more realistic to assume a sample loss of around 15 per cent with improvements for the 2013/14 HIES. Based on the RSEs presented in 2.3.2, it also appears that the 20 per cent desirable sample produced sound results for the survey, and with higher response rates anticipated, these results from a sample error perspective should improve. It is therefore proposed for the 2013/14 Palau HIES that a sample size of 20 per cent be adopted, which also allows for sample loss of 15 per cent.

    In the 2006 Palau HIES, effort was made to design a sample which could produce results for the six domains (stratum). Whilst reasonable results were generated for each of these domains, it was felt that post survey, there was no great use of these results at that level. For the 2013 HIES it is proposed to focus on generating reliable results at the national level, with focus also being place on producing results for the urban/rural split. In the case of Palau, the urban population is considered to consist of the states of Koror and Airai.

    The last phase to finalizing the sample numbers was to adjust the desirable sample numbers, so that they could be easily applied by the HIES team in a practical manner over the course of the 12 month fieldwork. This was achieved by modifying the sample counts (not too much) to enable sample sizes each round would be of a similar size, and workloads for each enumerator were the same size each round. The desirable workload for an enumerator covering the PD population was 10 households, whereas this figure was increased to 14 persons for GQs as it was envisaged the amount of time required to cover a person in a GQ would be significantly less. With this in mind, we wanted to ideally have the PD sample to be divisible by 160 so this would enable an even number of households each round, whilst maintaining a workload of 10 households for interviewers covering these areas. For the GQ sample, given the desirable number of GQs was already 225, and 16x14=224, then a simple reduction of 1 in the GQ sample would result in a nice even workload of 14 persons per round for 1 interviewer. This logic was also applied to the split between urban and rural resulting in 14 workloads in urban and 2 workloads in rural.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Developped in English, a questionnaire consisting of four Modules and a Weekly Diary covering 2 weeks was used for the Republic of Palau Household Income and Expenditure Survey (HIES) 2013. Each Module covers distinct but connected portion of the Household.

    The Modules are as follows: -Module 1 - Demographic Information: · Demographic Profile · Labor Force Status · Health Status · Communication Status -Module 2 - Household Expenditure: · Housing Characteristics · Housing Tenure Expenditure · Utilities & Communication Details · Utilities & Communication Expenditure · Land & Home Details · Land & Home Expenditure · Household Goods & Assets Details · Household Goods & Assets Expenditures · Vehicles & Accessories Details · Vehicles & Accessories Expenditures · Private Travel Details · Private Travel Expenditures · Household Services Expenditure · Contributions to Special Occasions · Provisions of Financial Support · Loans · Household Assets Insurance & Taxes · Personal Insurance -Module 3 - Individual Expenditures: · Education grants and scholarships · Education Identifications · Education Expenditures · Health Identifications · Health Expenditures · Clothing Identification · Clothing Expenditure · Communication Identification · Communication Expenditures · Luxury Items Identification · Luxury Items Expenditures -Module 4 - Income: · Wages & Salary: In country (current) · Wages & Salary: Overseas (last 12 months) · Wages & Salary: In country (last 12 months) · Income from Non Subsistence Business · Description of Agriculture & Forestry Activities · Income from Agriculture & Forestry Activities · Description of Handicraft & Home Processed Food Activities · Income from Handicraft & Home Processed Food Activities · Description of Livestock & Aquaculture Activities · Income from Livestock & Aquaculture Activities · Description of Fishing & Hunting Activities · Income from Fishing & Hunting Activities · Property Income, Transfer Income & Other Receipts · Remittances & Other Cash Gifts -Weekly Diary - Covering 14 Days (2 weeks): · Daily expenditure of food and non-food items · Payments of service made · Gambling winning and losses · Items received for free · Home produced food and non-food items.

    All questionnaires are provided as external resources in this documentation.

    Cleaning operations

    Program: CSPro 5.1x

    Data editing took place at a number of stages throughout the processing, including:

    a) Office editing and coding b) During data entry; Error report correction; Secondary editing by Quality Control Officer (QCO) c) Structure checking and completeness

    Detailed documentation of the editing of data can be found in the "Data processing guidelines" document provided as an external resource.

    Response rate

    Some 1,145 households were selected (in private dwellings and workers quarters) to participate in the survey, and the response rate was 75.8% (i.e. 869 households responded). This response rate allows for statistically significant analysis at the national, urban and rural level.

    Response rates for private households by State: -Koror: 355 households responded out of 480 selected => 73.9%; -Airai: 119 households responded out of 160 selected => 74.4%; -URBAN: 474 households responded out of 640 selected => 74.1%; -Kayangel: 0 households responded out of 10 selected => 0%; -Ngarchelong: 27 households responded out of 30 selected => 90%; -Ngaraard: 22 households responded

  12. U.S. median household income 2023, by state

    • statista.com
    • ai-chatbox.pro
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by state [Dataset]. https://www.statista.com/statistics/233170/median-household-income-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the real median household income in the state of Alabama was 60,660 U.S. dollars. The state with the highest median household income was Massachusetts, which was 106,500 U.S. dollars in 2023. The average median household income in the United States was at 80,610 U.S. dollars.

  13. p

    Household Income and Expenditure Survey 2015-2016 - Tokelau

    • microdata.pacificdata.org
    Updated Jan 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tokelau National Statistics Office (2020). Household Income and Expenditure Survey 2015-2016 - Tokelau [Dataset]. https://microdata.pacificdata.org/index.php/catalog/730
    Explore at:
    Dataset updated
    Jan 27, 2020
    Dataset authored and provided by
    Tokelau National Statistics Office
    Time period covered
    2015 - 2016
    Area covered
    Tokelau
    Description

    Abstract

    Household Income and Expenditure Survey (HIES) collects a wealth of information on HH income and expenditure, such as source of income by industry, HH expenditure on goods and services, and income and expenditure associated with subsistence production and consumption. In addition to this, HIES collects information on sectoral and thematic areas, such as education, health, labour force, primary activities, transport, information and communication, transfers and remittances, food expenditure (as a proxy for HH food consumption and nutrition analysis), and gender.

    The Pacific Islands regionally standardized HIES instruments and procedures were adopted by the Government of Tokelau for the 2015/16 Tokelau HIES. These standards were designed to feed high-quality data to HIES data end users for:

    1. deriving expenditure weights and other useful data for the revision of the consumer price index;
    2. supplementing the data available for use in compiling official estimates of various components in the System of National Accounts;
    3. supplementing the data available for production of the balance of payments; and
    4. gathering information on poverty lines and the incidence of poverty in Tokelau.

    The data allow for the production of useful indicators and information on the sectors covered in the survey, including providing data to inform indicators under the UN Sustainable Development Goals (SDGs). This report, the above listed outputs, and any thematic analyses of HIES data, collectively provide information to assist with social and economic planning and policy formation.

    Geographic coverage

    National coverage.

    Analysis unit

    Households and Individuals.

    Universe

    The universe of the 2015/16 Tokelau Household Income and Expenditure Survey (HIES) is all occupied households (HHs) in Tokelau. HHs are the sampling unit, defined as a group of people (related or not) who pool their money, cook and eat together. It is not the physical structure (dwelling) in which people live. The HH must have been living in Tokelau for a period of six months, or have had the intention to live in Tokelau for a period of twelve months in order to be included in the survey.

    Household members covered in the survey include: -usual residents currently living in the HH; -usual residents who are temporarily away (e.g., for work or a holiday); -usual residents who are away for an extended period, but are financially dependent on, or supporting, the HH (e.g., students living in school dormitories outside Tokelau, or a provider working overseas who hasn't formed or joined another HH in the host country) and plan to return; -persons who frequently come and go from the HH, but consider the HH being interviewed as their main place of stay; -any person who lives with the HH and is employed (paid or in-kind) as a domestic worker and who shares accommodation and eats with the host HH; and -visitors currently living with the HH for a period of six months or more.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2015/16 Tokelau Household Income and Expenditure Survey (HIES) sampling approach was designed to generate reliable results at the national level. That is, the survey was not designed to produce reliable results at any lower level, such as for the three individual atolls. The reason for this is partly budgetary constraint, but also because the HIES will serve its primary objectives with a sample size that will provide reliable national aggregates.

    The sampling frame used for the random selection of HHs was from December 2013, i.e. the HH listing updated in the 2013 Population Count.

    The 2015/16 Tokelau HIES had a quota of 120 HHs. The sample covered all three populated atolls in Tokelau (Fakaofo, Nukunonu and Atafu) and the sample was evenly allocated between the three atoll clusters (i.e., 40 HHs per atoll surveyed over a ten-month period). The HHs within each cluster were randomly selected using a single-stage selection process.

    In addition to the 120 selected HHs, 60 HHs (20 per cluster) were randomly selected as replacement HHs to ensure that the desired sample was met. The replacement HHs were only approached for interview in the case that one of the primarily selected HHs could not be interviewed.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires for this Household Income and Expenditure Survey (HIES) are composed of a diary and 4 modules published in English and in Tokelauan. All English questionnaires and modules are provided as external resources.

    Here is the list of the questionnaires for this 2015-2016 HIES: - Diary: week 1 an 2; - Module 1: Demographic information (Household listing, Demographic profile, Activities, Educational status, Communication status...); - Module 2: Household expenditure (Housing characteristics, Housing tenure expenditure, Utilities and communication, Land and home...etc); - Module 3: Individual expenditure (Education, Health, Clothing, Communication, Luxury items, Alcohonl & tobacco); - Module 4: Household and individual income (Wages and salary, Agricultural and forestry activities, Fishing gathering and hunting activities, livestock and aquaculture activities...etc).

    Cleaning operations

    All inconsistencies and missing values were corrected using a variety of methods: 1. Manual correction: verified on actual questionnaires (double check on the form, questionnaire notes, local knowledge, manual verifications) 2. Subjective: the answer is obvious and be deducted from other questions 3. Donor hot deck: the value is imputed based on similar characteristics from other HHs or individuals (see example below) 4. Donor median: the missing or outliers were imputed from similar items reported median value 5. Record deletion: the record was filled by mistake and had to be removed.

    Several questions used the hotdeck method of imputation to impute missing and outlying values. This method can use one to three dimensions and is dependent on which section and module the question was placed. The process works by placing correct values in a coded matrix. For example in Tokelau the “Drink Alcohol” questions used a three dimension hotdeck to store in-range reported data. The constraining dimensions used are AGE, SEX and RELATIONSHIP questions and act as a key for the hotdeck. On the first pass the valid yes/no responses are place into this 3-dimension hotdeck. On the second pass the data in the matrix is updated one person at a time. If a “Drink Alcohol” question contained a missing response then the person's coded age, sex and relationship key is searched in the “valid” matrix. Once a key is found the result contained in the matrix is imputed for the missing value. The first preferred method to correct missing or outlying data is the manual correction (trying to obtain the real value, it could have been miss-keyed or reported incorrectly). If the manual correction was unsuccessful at correcting the values, a subjective approach was used, the next method would be the hotdeck, then the donor median and the last correction is the record deletion. The survey procedure and enumeration team structure allow for in-round data entry, which gives the field staff the opportunity to correct the data by manual review and by using the entry system-generated error messages. This process was designed to improve data quality. The data entry system used system-controlled entry, interactive coding and validity and consistency checks. Despite the validity and consistency checks put in place, the data still required cleaning. The cleaning was a two-stage process, which included manual cleaning while referencing the questionnaire, whereas the second stage involved computer-assisted code verification and, in some cases, imputation. Once the data were clean, verified and consistent, they were recoded to form a final aggregated database, consisting of: Person level record - characteristics of every (household) HH member, including activity and education profile; HH level record - characteristics of the dwelling and access to services; Final aggregated income - all HH income streams, by category and type; Final aggregated expenditure - all HH expenditure items, by category and type.

    The cleaning was a two-stage process, which included manual cleaning while referencing the questionnaire, whereas the second stage involved computer-assisted code verification and, in some cases, imputation. Once the data were clean, verified and consistent, they were recoded to form a final aggregated database.

    Response rate

    Overall, 99% of the response rate objective was achieved.

    Sampling error estimates

    Refer to Appendix 2 of the Tokelau 2015/2016 Household Income and Expenditure Survey report attached as an external resource.

  14. i

    Household Income and Expenditure Survey 2016 - Maldives

    • nada-demo.ihsn.org
    • catalog.ihsn.org
    Updated Sep 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maldives National Bureau of Statistics (2021). Household Income and Expenditure Survey 2016 - Maldives [Dataset]. https://nada-demo.ihsn.org/index.php/catalog/20
    Explore at:
    Dataset updated
    Sep 13, 2021
    Dataset authored and provided by
    Maldives National Bureau of Statistics
    Time period covered
    2016
    Area covered
    Maldives
    Description

    Abstract

    The Household Income and Expenditure Survey (HIES) is conducted by National Bureau of Statistics (NBS) with the most recent HIES conducted in 2016. In HIES 2016, 330 enumeration blocks were randomly selected from all 20 administrative Atolls and Male' with a sample of 4,985 households. HIES 2016 is the first such survey where the sample was designed in such a way that the results are representative at the level of each Atoll in addition to Male'. The survey was conducted in 172 administrative islands (excluding Male') in the country at the time. The high coverage of the islands and the resulting travel costs increased the total cost.

    The first nationwide HIES conducted in 2002-2003 covered 834 households from the capital Male' and 40 islands randomly selected from all the Atolls. And the second national wide HIES was conducted in 2009-2010 covered 600 households from the capital Male' and 1,460 households from the islands randomly selected from all the Atolls.

    NBS plans to conduct a nationwide HIES every 5 years in the future. Due to extensive revisions in the design of the survey instrument, results on poverty are not comparable to previous years.

    Geographic coverage

    The geographic domains of analysis for the HIES are the 21 atolls of the Maldives, as well as the national level. There is also interest in obtaining HIES results at the national level for the following administrative island size groups: (1) less than 500 population; (2) 501 to 1000 population; (3) 1001 to 2000 population; and (4) greater than 2000 population. Data were not collected in resort and industrial islands.

    Analysis unit

    household and individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame for the HIES 2016 is based on the summary data and cartography from the 2014 Maldives Population and Housing Census. The survey covers all of the household-based population in the administrative islands of each atoll of the Maldives, but excluded the institutional population (for example, persons in prisons, hospitals, military barracks and school dormitories).

    A stratified two-stage sample design is used for the HIES. The primary sampling units (PSUs) selected at the first stage for the administrative islands are the enumeration blocks (EBs), which are small operational areas defined on maps for the 2014 Census enumeration. The average number of households per EB is 65.

    Sampling deviation

    Data were not collected in resort and industrial islands

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was developed by the National Bureau of Statistics (NBS) in consultation with the World Bank (WB), International Labour Organization (ILO) and United National Economic and Social Commission for Asia and the Pacific (UNESCAP). Several meetings were conducted to discuss the HIES questionnaire during 2015, beginning with a data users workshop held on 22 April 2015. After conducting several pretests (K.Gulhu, K. Dhiffushi, K.Himmafushi, and Male') during the period June 2015 to January 2016, the questionnaire was finalized in January 2016.

    In order to accommodate important data requirements of other government agencies, meetings were held with relevant personnel. In this regard focused discussions were held with Ministry of Tourism to incorporate the domes??c tourism into the HIES Questionnaire. Similarly, meetings were held with Ministry of Health to formulate the questions to capture details of health expenditure required to compile National Health Accounts.

    During the HIES questionnaire design, International Labour Organization (ILO) provided the technical guidance in the development of Labour Force module, which was newly introduced in HIES 2016 according to the most recent ILO guidelines. World Bank (WB) provided the technical guidance to improve the methodology to better capture the poverty aspects, with a special focus on including questions relevant to capture the ownership of durable goods and their user value, capture food consumption and food away by a newly introduction food consumption module, and to better capturing the rental value of owner occupied housing. Technical experts from World Bank were involved in some of the pretests and during the questionnaire finalization process. United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP), Statistics advisor provided overall technical guidance in development of the questionnaire, during the data users workshop and participated in initial pretests. This work was led by the technical team of NBS.

    Cleaning operations

    As the survey was on hold during the Ramadan period, the manual editing and coding of the 3 batch of the forms was carried out during Ramadan period. The coding of data started during June 2016 and was able to complete by the end of July 2016 using 10 coders who also worked as data collection officers in the survey. In order to reduce the coding errors and also to maintain consistency, 4 staff from the NBS was assigned as supervisors during the coding operation.

    Coding of the second batch of the questionnaires started during December 2016 using 6 coders and additional staff from NBS were actively involved in the coding.

    The classification used to code industry was International Standard Industrial Classification of all Economic Activities (ISIC) Rev. 4 and to code occupation, International Standard Classification of Occupation (ISCO) 08 was used. Classification of Individual Consumption According to purpose (COICOP), 2003 was used to give code for food and non-food items in the forms. COICOP codes were given at 7-digit level for food items and non-food items. Most of the COICOP was already pre-coded in the questionnaire and only few needed to be coded. Revision of the international Standard.

    During the manual editing, all the questionnaires by household level were stamped together and assigned a serial number to the household which was provided by the data entry team. Form 4(Individual form) and Form 3 (Expenditure Unit form) information was verified with Form 2 (member listing form) information. Coders verified if all the members in Form 2 was recorded in Form 4. If the and sex was not filled in Form 4 (Individual form) than coders transferred this information from Form 2 to Form 4. In form 3 (expenditure unit form) if the expenditure unit number was missing this information also was transferred from form 2 to form 3. These checks were necessary to done before sending to data entry as Form 2 (member listing form) was decided not to enter. Classification of Education (ISCED) 39c/19, resolution 20 was used to identified the field of education. ISCED code was given at 4-digit level code with first two digits was from ISCED and last two digits was localized one code produced by the NBS to detail out the field of education. Atoll Island codes were the codes used in Census 2014. ISIC, ISCO and Atoll Island codes were in four-digit level.

    Response rate

    98.5% response rates for the number of sampled households

  15. U.S. median household income 2023, by race and ethnicity

    • statista.com
    • ai-chatbox.pro
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by race and ethnicity [Dataset]. https://www.statista.com/statistics/233324/median-household-income-in-the-united-states-by-race-or-ethnic-group/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the gross median household income for Asian households in the United States stood at 112,800 U.S. dollars. Median household income in the United States, of all racial and ethnic groups, came out to 80,610 U.S. dollars in 2023. Asian and Caucasian (white not Hispanic) households had relatively high median incomes, while the median income of Hispanic, Black, American Indian, and Alaskan Native households all came in lower than the national median. A number of related statistics illustrate further the current state of racial inequality in the United States. Unemployment is highest among Black or African American individuals in the U.S. with 8.6 percent unemployed, according to the Bureau of Labor Statistics in 2021. Hispanic individuals (of any race) were most likely to go without health insurance as of 2021, with 22.8 percent uninsured.

  16. s

    Household income

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Sep 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2022). Household income [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/work-pay-and-benefits/pay-and-income/household-income/latest
    Explore at:
    csv(261 KB)Available download formats
    Dataset updated
    Sep 5, 2022
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    In the 3 years to March 2021, black households were most likely out of all ethnic groups to have a weekly income of under £600.

  17. e

    Household Expenditure and Income Survey, HEIS 2013 - Jordan

    • erfdataportal.com
    Updated Oct 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2022). Household Expenditure and Income Survey, HEIS 2013 - Jordan [Dataset]. http://erfdataportal.com/index.php/catalog/128
    Explore at:
    Dataset updated
    Oct 12, 2022
    Dataset provided by
    Department of Statistics
    Economic Research Forum
    Time period covered
    2013 - 2014
    Area covered
    Jordan
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 25% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    Surveys related to the family budget are considered one of the most important surveys types carried out by the Department Of Statistics, since it provides data on household expenditure and income and their relationship with different indicators. Therefore, most of the countries undertake periodic surveys on household income and expenditures. The Department Of Statistics, since established, conducted a series of Expenditure and Income Surveys during the years 1966, 1980, 1986/1987, 1992, 1997, 2002/2003, 2006/2007, 2008/2009, 2010/2011 and because of continuous changes in spending patterns, income levels and prices, as well as in the population internal and external migration, it was necessary to update data for household income and expenditure over time. Hence, the need to implement the Household Expenditure and Income Survey for the year 2013 arises.

    The survey was then conducted to achieve the following objectives: 1. Provide data on income and expenditure to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. 2. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index. 3. Provide the necessary data for the national accounts related to overall consumption and income of the household sector. 4. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty. 5. Identify consumer spending patterns prevailing in the society, and the impact of demographic, social and economic variables on those patterns. 6. Calculate the average annual income of the household and the individual, and identify the relationship between income and different socio-economic factors, such as profession and educational level of the head of the household and other indicators. 7. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.

    Geographic coverage

    The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the Kingdom. Where the Kingdom is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 25% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    The Household Expenditure and Income survey sample, for the year 2013, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 10 households was selected from each cluster, in addition to another 5 households selected as a backup for the basic sample, using a systematic sampling technique. Those 5 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2010 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (8 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map. It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    To reach the survey objectives, 3 forms have been developed. Those forms were finalized after being tested and reviewed by specialists taking into account making the data entry, and validation, process on the computer as simple as possible.

    (1) General Form/Questionnaire This form includes: - Housing characteristics such as geographic location variables, household area, building material predominant for external walls, type of tenure, monthly rent or lease, main source of water, lighting, heating and fuel cooking, sanitation type and water cycle, the number of rooms in the dwelling, in addition to providing ownership status of some home appliances and car. - Characteristics of household members: This form focused on the social characteristics of the family members such as relation to the head of the family, gender, age and educational status and marital status. It also included economic characteristics such as economic activity, and the main occupation, employment status, and the labor sector. To the additions of questions about individual continued to stay with the family, in order to update the information at the end of each of the four rounds of the survey. - Income section which included three parts · Family ownership of assets · Productive activities for the family · Current income sources

    (2) Expenditure on food commodities form/Questionnaire This form indicates expenditure data on 17 consumption groups. Each group includes a number of food commodities, with the exception of the latter group, which was confined to some of the non-food goods and services because of their frequent spending pattern on daily basis like food commodities. For the purposes of the efficient use of results, expenditure data of the latter group was moved with the non-food commodities expenditure. The form also includes estimated amounts of own-produced food items and those received as gifts or in an in-kind form, as well as servants living with the family spending on themselves from their own wages to buy food.

    (3) Expenditure on non-food commodities form/Questionnaire This form indicates expenditure data on 11 groups of non-food items, and 5 sets of spending on services, in addition to a group of consumption expenditure. It also includes an estimate of self-consumption, and non-food gifts or other items in an in-kind form received or sent by the household, as well as servants living with the family spending on themselves from their own wages to buy non-food items.

    Cleaning operations

    ----> Raw Data

    The data collection phase was then followed by the data processing stage accomplished through the following procedures: 1- Organizing forms/questionnaires A compatible archive system, with the nature of the subsequent operations, was used to classify the forms according to different round throughout the year. This is to effectively enable extracting the forms when required for processing. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms are back to the archive system. 2- Data office checking This phase is achieved concurrently with the data collection phase in the field, where questionnaires completed in the fieldwork are immediately sent to data office checking phase. 3- Data coding A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were use, while for the rest of the questions, all coding were predefined

  18. National Household Income and Expenditure Survey 2009-2010 - Namibia

    • microdata.nsanamibia.com
    Updated Aug 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Namibia Statistics Agency (2024). National Household Income and Expenditure Survey 2009-2010 - Namibia [Dataset]. https://microdata.nsanamibia.com/index.php/catalog/6
    Explore at:
    Dataset updated
    Aug 5, 2024
    Dataset authored and provided by
    Namibia Statistics Agencyhttps://nsa.org.na/
    Time period covered
    2009 - 2010
    Area covered
    Namibia
    Description

    Abstract

    The Household Income and Expenditure Survey is a survey collecting data on income, consumption and expenditure patterns of households, in accordance with methodological principles of statistical enquiries, which are linked to demographic and socio-economic characteristics of households. A Household Income and expenditure Survey is the sole source of information on expenditure, consumption and income patterns of households, which is used to calculate poverty and income distribution indicators. It also serves as a statistical infrastructure for the compilation of the national basket of goods used to measure changes in price levels. Furthermore, it is used for updating of the national accounts.

    The main objective of the NHIES 2009/2010 is to comprehensively describe the levels of living of Namibians using actual patterns of consumption and income, as well as a range of other socio-economic indicators based on collected data. This survey was designed to inform policy making at the international, national and regional levels within the context of the Fourth National Development Plan, in support of monitoring and evaluation of Vision 2030 and the Millennium Development Goals. The NHIES was designed to provide policy decision making with reliable estimates at regional levels as well as to meet rural - urban disaggregation requirements.

    Geographic coverage

    National Coverage

    Analysis unit

    Individuals and Households

    Universe

    Every week of the four weeks period of a survey round all persons in the household were asked if they spent at least 4 nights of the week in the household. Any person who spent at least 4 nights in the household was taken as having spent the whole week in the household. To qualify as a household member a person must have stayed in the household for at least two weeks out of four weeks.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The targeted population of NHIES 2009/2010 was the private households of Namibia. The population living in institutions, such as hospitals, hostels, police barracks and prisons were not covered in the survey. However, private households residing within institutional settings were covered. The sample design for the survey was a stratified two-stage probability sample, where the first stage units were geographical areas designated as the Primary Sampling Units (PSUs) and the second stage units were the households. The PSUs were based on the 2001 Census EAs and the list of PSUs serves as the national sample frame. The urban part of the sample frame was updated to include the changes that take place due to rural to urban migration and the new developments in housing. The sample frame is stratified first by region followed by urban and rural areas within region. In urban areas further stratification is carried out by level of living which is based on geographic location and housing characteristics. The first stage units were selected from the sampling frame of PSUs and the second stage units were selected from a current list of households within each selected PSU, which was compiled just before the interviews.

    PSUs were selected using probability proportional to size sampling coupled with the systematic sampling procedure where the size measure was the number of households within the PSU in the 2001 Population and Housing Census. The households were selected from the current list of households using systematic sampling procedure.

    The sample size was designed to achieve reliable estimates at the region level and for urban and rural areas within each region. However the actual sample sizes in urban or rural areas within some of the regions may not satisfy the expected precision levels for certain characteristics. The final sample consists of 10 660 households in 533 PSUs. The selected PSUs were randomly allocated to the 13 survey rounds.

    Sampling deviation

    All the expected sample of 533 PSUs was covered. However a number of originally selected PSUs had to be substituted by new ones due to the following reasons.

    Urban areas: Movement of people for resettlement in informal settlement areas from one place to another caused a selected PSU to be empty of households.

    Rural areas: In addition to Caprivi region (where one constituency is generally flooded every year) Ohangwena and Oshana regions were badly affected from an unusual flood situation. Although this situation was generally addressed by interchanging the PSUs betweensurvey rounds still some PSUs were under water close to the end of the survey period. There were five empty PSUs in the urban areas of Hardap (1), Karas (3) and Omaheke (1) regions. Since these PSUs were found in the low strata within the urban areas of the relevant regions the substituting PSUs were selected from the same strata. The PSUs under water were also five in rural areas of Caprivi (1), Ohangwena (2) and Oshana (2) regions. Wherever possible the substituting PSUs were selected from the same constituency where the original PSU was selected. If not, the selection was carried out from the rural stratum of the particular region. One sampled PSU in urban area of Khomas region (Windhoek city) had grown so large that it had to be split into 7 PSUs. This was incorporated into the geographical information system (GIS) and one PSU out of the seven was selected for the survey. In one PSU in Erongo region only fourteen households were listed and one in Omusati region listed only eleven households. All these households were interviewed and no additional selection was done to cover for the loss in sample.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The instruments for data collection were as in the previous survey the questionnaires and manuals. Form I questionnaire collected demographic and socio-economic information of household members, such as: sex, age, education, employment status among others. It also collected information on household possessions like animals, land, housing, household goods, utilities, household income and expenditure, etc.

    Form II or the Daily Record Book is a diary for recording daily household transactions. A book was administered to each sample household each week for four consecutive weeks (survey round). Households were asked to record transactions, item by item, for all expenditures and receipts, including incomes and gifts received or given out. Own produce items were also recorded. Prices of items from different outlets were also collected in both rural and urban areas. The price collection was needed to supplement information from areas where price collection for consumer price indices (CPI) does not currently take place.

    Cleaning operations

    The questionnaires received from the regions were registered and counterchecked at the survey head office. The data processing team consisted of Systems administrator, IT technician, Programmers, Statisticians and Data typists.

    Data capturing

    The data capturing process was undertakenin the following ways: Form 1 was scanned, interpreted and verified using the “Scan”, “Interpret” & “Verify” modules of the Eyes & Hands software respectively. Some basic checks were carried out to ensure that each PSU was valid and every household was unique. Invalid characters were removed. The scanned and verified data was converted into text files using the “Transfer” module of the Eyes & Hands. Finally, the data was transferred to a SQL database for further processing, using the “TranScan” application. The Daily Record Books (DRB or form 2) were manually entered after the scanned data had been transferred to the SQL database. The reason was to ensure that all DRBs were linked to the correct Form 1, i.e. each household’s Form 1 was linked to the corresponding Daily Record Book. In total, 10 645 questionnaires (Form 1), comprising around 500 questions each, were scanned and close to one million transactions from the Form 2 (DRBs) were manually captured.

    Response rate

    Household response rate: Total number of responding households and non-responding households and the reason for non-response are shown below. Non-contacts and incomplete forms, which were rejected due to a lot of missing data in the questionnaire, at 3.4 and 4.0 percent, respectively, formed the largest part of non-response. At the regional level Erongo, Khomas, and Kunene reported the lowest response rate and Caprivi and Kavango the highest. See page 17 of the report for a detailed breakdown of response rates by region.

    Data appraisal

    To be able to compare with the previous survey in 2003/2004 and to follow up the development of the country, methodology and definitions were kept the same. Comparisons between the surveys can be found in the different chapters in this report. Experiences from the previous survey gave valuable input to this one and the data collection was improved to avoid earlier experienced errors. Also, some additional questions in the questionnaire helped to confirm the accuracy of reported data. During the data cleaning process it turned out, that some households had difficulty to separate their household consumption from their business consumption when recording their daily transactions in DRB. This was in particular applicable for the guest farms, the number of which has shown a big increase during the past five years. All households with extreme high consumption were examined manually and business transactions were recorded and separated from private consumption.

  19. p

    Household Income and Expenditure Survey 2015-2016 - Tuvalu

    • microdata.pacificdata.org
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Division (2023). Household Income and Expenditure Survey 2015-2016 - Tuvalu [Dataset]. https://microdata.pacificdata.org/index.php/catalog/722
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Central Statistics Division
    Time period covered
    2015 - 2016
    Area covered
    Tuvalu
    Description

    Abstract

    The main purpose of a HIES survey was to present high quality and representative national household data on income and expenditure in order to update Consumer Price Index (CPI), improve statistics on National Accounts and measure poverty within the country. These statistics are a requirement for evidence based policy-making in reducing poverty within the country and monitor progress in the national strategic plan "Te Kakeega 3".

    The 2015-16 Household Income and Expenditure Survey (HIES) is the third HIES that was conducted by the Central Statistics Division since Tuvalu gained political independence in 1978. With great assitance from the Pacific Community (SPC) experts, the HIES was conducted over a period of 12 months in urban (Funafuti) and rural (4 outer islands) areas. From a total of 1,872 households on Tuvalu, an amount of 38 percent sample of all households in Tuvalu was selected to provide valid response.

    Geographic coverage

    National Coverage.

    Analysis unit

    Household and Individual.

    Universe

    The scope of the 2015/2016 Household Income and Expenditure Survey (HIES) was all occupied households in Tuvalu. Households are the sampling unit, defined as a group of people (related or not) who pool their money, and cook and eat together. It is not the physical structure (dwelling) in which people live. HIES covered all persons who were considered to be usual residents of private dwellings (must have been living in Tuvalu for a period of 12-months, or have intention to live in Tuvalu for a period of 12-months in order to be included in the survey). Usual residents who are temporary away are included as well (e.g., for work or a holiday).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Out of the total 1,872 households (HHs) listed in 2015, a sample 706 households which is 38 percent of the the total households were succesfully interviewed for a response rate of 98%.

    SAMPLING FRAME: The 2010 (Household Income and Expenditure Survey (HIES) sample was spread over 12 months rounds - one each quarter - and the specifications of the final responding households are summarised below: Tuvalu urban: Selected households: 259 = 217 responded; Tuvalu rural: Selected households: 346 = 324 responded.

    In 2010, 605 HHs were selected and 541 sufficiently responded. The 2010 HIES provided solid estimates for expenditure aggregates at the national level (sampling error for national expenditure estimate is 3.1%).

    Similarly to the 2010 HIES, private occupied dwellings were the statistical unit for the 2015/2016 HIES. Institutions and vacant dwellings were removed from the sampling frame. Some areas in Tuvalu are very difficult to reach due to the cost of transportation and the remoteness of some islands, which is why they are excluded from the sample selection. The following table presents the distribution of the HHs according to their location (main island or outer islands in each domain) based on the 2012 Population and Housing Census: -Urban - Funafuti: 845 (48%); -Rural - Nanumea: 115 (7%); -Rural - Nanumaga: 116 (7%); -Rural - Niutao: 123 (7%); -Rural - Nui: 138 (8%); -Rural - Vaitupu: 226 (13%); -Rural - Nukufetau: 124 (%); -Rural - Nukulaelae: 67 (%); -Rural - Niulakita: 7 (%); -TOTAL: 1761 (100%).

    The 2012 Population and Household Census (PHC) wsa used to select the island to interview, and then in each selected island the HH listing was updated for selection. For budget and logistics reasons the islands of Nui, Nukufetau, Nukulaelae and Niukalita were excluded from the sample selection. In total 19% of the HHs were excluded from the selection but this decision should not affect the HIES outputs as those 19% show similar profile as other HHs who live in the outer islands. This exclusion will be take into consideration in the sampling weight computation in order to cover 100% of the outer island HHs.

    SAMPLE SELECTION AND SAMPLE SIZE: A simple random selection was used in each of the selected island (HHs were selected directly from the sampling frame). Based on the findings from the 2010 Tuvalu HIES, the sample in Funafuti has been increased and the one in rural remains stable. Within each rural selected atolls, the allocation of the sample size is proportional to its size (baed on the 2012 population census). The table below shows the number of HHs to survey: Urban - Funafuti: 384; Rural - Vaitupu: 126; Rural - Nanumea: 63; Rural - Niutao: 84; Rural - Nanumaga: 63; TUVALU: 720.

    The expected sample size has been increased by one third (361 HHs) with the aim of pre-empting the non contacted HHs (refusals, absence….). The 2015/2016 HIES adopted the standardized HIES methodology and survey instruments for the Pacific Islands region. This approach, developed by the Pacific Community (SPC), has resulted in proven survey forms being used for data collection. It involves collection of data over a 12-month period to account for seasonal changes in income and expenditure patterns, and to keep the field team to a smaller and more qualified group. Their implementation had the objective of producing consistent and high quality data.

    Sampling deviation

    For budget and logistics reasons the islands of Nui, Nukufetau, Nukulaelae and Niukalita were excluded from the sample selection. In total 19% of the HHs were excluded from the selection but this decision should not affect the HIES outputs as those 19% show similar profile as other HHs who live in the outer islands. This exclusion will be take into consideration in the sampling weight computation in order to cover 100% of the outer island HHs.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey contain 4 modules and 2 Diaries (1 diary for each of the two weeks that a household was enumerated). The purpose of a Diary is to record all the daily expenses and incomes of a Household as shown by its topics below; - DIARY
    The Diary module contains questions such as "What did your Household buy Today (Food and Non-Food Items)?", "Payments for Services made Today", "Food, Non-Food and Services Received for Free", "Home-Produced Items Today", "Overflow Sheet for Items Bought This Week", "Overflow Sheet for Services Paid for This Week", "Overflow Sheet for Items Received for Free this Week", and an "Overflow Sheet for Home-Produced Items This Week".

    The 4 modules are detailed below; - MODULE 1 - DEMOGRAPHIC INFORMATION The module contains individual demograhic questions on their Demographic Profiles, Labour Force status (Activities), Education status, Health status, Communication status and questions on "Household members that have left the household". - MODULE 2 - HOUSEHOLD EXPENDITURE The module contains household expenditure questions the housing characteristics, Housing tenure expenditures, Utilities and Communication, Land, Household goods and assets, Vehicles and accessories, Private Travel details, Household services expenditures, Cash contributions, Provisions of Financial support, Household asset insurance and taxes and questions on Personal insurance. - MODULE 3 - INDIVIDUAL EXPENDITURE This module contains individual expenditure questions on Education, Health, Clothing, Communication, Luxury Items, Alcohol, Kava and Tobacco, and Deprivation questions. - MODULE 4 - HOUSEHOLD & INDIVIDUAL INCOME
    This module contains household and individual questions on their income, on topics such as Wages and Salary, Agricultural and Forestry Activities, Fishing, Gathering and Hunting Activities, Livestock and Aquaculture Activities, Handicraft/Home-processed Food Activities, Income from Non-subsistence Business, Property income, transfer income & other Receipts, and Remmitances and other Cash gifts.

    Depending on the information being collected, a recall period (ranging from the last 7 days to the last 12 months) is applied to various sections of the questionnaire. The forms were completed by face-to-face interview, usually with the HH head providing most of the information, with other household (HH) members being interviewed when necessary. The interviews took place over a 2-week period such that the HH diary, which is completed by the HH on a daily basis for 2 weeks, can be monitored while the module interviews take place. The HH diary collects information on the HH's daily expenditure on goods and services; and the harvest, capture, collection or slaughter of primary produce (fruit, vegetables and animals) by intended purpose (home consumption, sale or to give away). The income and expenditure data from the modules and the diary are concatenated (ensuring that double counting does not occur), annualised, and extrapolated to form the income and expenditure aggregates presented herein.

    Cleaning operations

    The survey procedure and enumeration team structure allowed for in-round data entry, which gives the field staff the opportunity to correct the data by manual review and by using the entry system-generated error messages. This process was designed to improve data quality. The data entry system used system-controlled entry, interactive coding and validity and consistency checks. Despite the validity and consistency checks put in place, the data still required cleaning. The cleaning was a 2-stage process, which included manual cleaning while referencing the questionnaire, whereas the second stage involved computer-assisted code verification and, in some cases, imputation. Once the data were clean, verified and consistent, they were recoded to form a final aggregated database, consisting of: 1. Person level record - characteristics of every HH member, including activity

  20. National Household Income and Expenditure Survey 2018, New series - Mexico

    • microdata.fao.org
    Updated May 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics and Geography (Instituto Nacional de Estadística y Geografía) (2025). National Household Income and Expenditure Survey 2018, New series - Mexico [Dataset]. https://microdata.fao.org/index.php/catalog/2681
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset provided by
    National Institute of Statistics and Geographyhttp://www.inegi.org.mx/
    Authors
    National Institute of Statistics and Geography (Instituto Nacional de Estadística y Geografía)
    Time period covered
    2018 - 2019
    Area covered
    Mexico
    Description

    Abstract

    The National Survey of Household Income and Expenditure (ENIGH) aims to provide a statistical overview of the behavior of household income and expenditure in terms of its amount, origin and distribution. In addition, it offers information on the occupational and sociodemographic characteristics of the members of the household, as well as the characteristics of the housing infrastructure and household equipment.

    The ENIGH is part of the Information System of National Interest (IIN), which means that the results obtained from this project are mandatory for the Federation, the states and the municipalities, in order to contribute to national development.

    In 1984, a trend began to broaden the objectives and homogenize the methodology, taking into account international recommendations and the information requirements of the different users, taking care of historical comparability.

    Periodicity: Since 1992 it has been carried out biennially (every two years) with the exception of 2005 when an extraordinary survey was carried out.

    Target population: It is made up of the households of nationals or foreigners, who usually reside in private homes within the national territory.

    Selection Unit: Private home. The dwellings are chosen through a meticulous statistical process that guarantees that the results obtained from only a part of the population (sample) can be generalized to the total.

    Sampling Frame: INEGI's multi-purpose framework is made up of demographic and cartographic information obtained from the 2010 Population and Housing Census.

    Observation unit: The home.

    Unit of analysis: The household, the dwelling and the members of the household.

    Thematic coverage:

    Characteristics of the house. Residents and identification of households in the dwelling. Sociodemographic characteristics of the residents of the dwelling. Home equipment, services. Activity condition and occupational characteristics of household members aged 12 and over. Total current income (monetary and non-monetary) of households. Financial and capital perceptions of households and their members. Current monetary expenditure of households. Financial and capital expenditures of households.

    The different concepts of the ENIGH are governed by recommendations agreed upon in international conventions, for example:

    The resolutions and reports of the 18 International Conferences on Labour Statistics, of the International Labour Organization (ILO).

    The final report and recommendations of the Canberra Group, an expert group on "Household Income Statistics".

    Manual of Household Surveys. Department of International Economic and Social Affairs, Bureau of Statistics. United Nations, New York, 1987.

    They are also articulated with the CNational Accounts and with the Household Surveys carried out by the INEGI.

    Sample size: At the national level, including the ten-one, there are 93,186 private homes.

    Survey period: The collection of information will take place between August 11 and November 18 of this year. Throughout this period, ten cuts are made, each organized in ten days; Therefore, each of these cuts will be known as tens (see calendar in the annex).

    Workload: According to the meticulousness in the recording of information in this project, a load of six interviews in private homes per dozen has been defined for each interviewer. The number of interviews may decrease or increase according to several factors: non-response, recovery from non-response, or additional households.

    Geographic coverage

    National and at the state level - Urban: localities with 2,500 or more inhabitants - Rural: localities with less than 2,500 inhabitants

    Analysis unit

    The household, the dwelling and the members of the household.

    Universe

    The survey is aimed at households in the national territory.

    Kind of data

    Probabilistic household survey

    Sampling procedure

    The design of the exhibition for ENIGH-2018 is characterized by being probabilistic; consequently, the results obtained from the survey are generalized to the entire population of the study domain; in turn, it is two-stage, stratified and by clusters, where the ultimate unit of selection is the dwelling and the unit of observation is the household.

    The ENIGH-2018 subsample was selected from the 2012 INEGI master sample, this master sample was designed and selected from the 2012 Master Sampling Framework (Marco Maestro de Muestreo (MMM)) which was made up of housing clusters called Primary Sampling Units (PSU), built from the cartographic and demographic information obtained from the 2010 Population and Housing Census. The master sample allows the selection of subsamples for all housing surveys carried out by INEGI; Its design is probabilistic, stratified, single-stage and by clusters, since it is in them that the dwellings that make up the subsamples of the different surveys were selected in a second stage. The design of the MMM was built as follows:

    Formation of the primary sampling units (PSU)

    First, the set of PSUs that will cover the national territory is built.

    The primary sampling units are made up of groups of dwellings with differentiated characteristics depending on the area to which they belong, as specified below:

    a) In high urban areas

    The minimum size of a PSU is 80 inhabited dwellings and the maximum is 160. They can be made up of:

    • A block. • The union of two or more contiguous blocks of the same AGEB. • The union of two or more contiguous blocks of different AGEBs in the same locality. • The union of two or more contiguous blocks from different localities, which belong to the same size of locality.

    b) In urban complement: The minimum size of a PSU is 160 inhabited dwellings and the maximum is 300. They can be made up of:

    • A block. • The union of two or more contiguous blocks of the same AGEB. • The union of two or more contiguous blocks of different AGEBs in the same locality. • The union of two or more contiguous blocks from different AGEBs and localities, but from the same municipality.

    c) In rural areas: The minimum size of a PSU is 160 inhabited dwellings and the maximum is 300. They can be made up of:

    • An AGEB. • Part of an AGEB. • The union of two or more adjoining AGEBs in the same municipality. • The union of an AGEB with a part of another adjoining AGEB in the same municipality.

    The total number of PSUs formed was 240,912.

    Stratification

    Once the set of PSUs has been constructed, those with similar characteristics are grouped, that is, they are stratified.

    The political division of the country and the formation of localities differentiated by their size, naturally form a geographical stratification.

    In each federal entity there are three areas, divided into zones.

    High urban, Zone 01 to 09, Cities with 100,000 or more inhabitants.

    Urban complement, Zone 25, 35, 45 and 55, From 50,000 to 99,999 inhabitants, 15,000 to 49,999 inhabitants, 5,000 to 14,999 inhabitants, 2,500 to 4,999 inhabitants.

    Rural, Zone 60, Localities with less than 2,500 inhabitants.

    At the same time, four sociodemographic strata were formed in which all the PSUs in the country were grouped, this stratification considers the sociodemographic characteristics of the inhabitants of the dwellings, as well as the physical characteristics and equipment of the same, expressed through 34 indicators built with information from the 2010 Population and Housing Census*, for which multivariate statistical methods were used.

    In this way, each PSU was classified into a single geographical and a sociodemographic stratum.

    As a result, there are a total of 683 strata throughout the country.

    Selection of the PSUs of the master sample The PSUs of the master sample were selected by means of a sampling with probability proportional to the size.

    Sample size For the calculation of the sample size of the ENIGH-2018, the average total current income per household was considered as a reference variable.

    Sampling deviation

    As a result of the sum of the 87,826 homes selected and 1,312 additional homes that were found in those homes, the total amounted to 89,138 households.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Six collection instruments will be used to collect information in each household, four of which concentrate information on the household as a whole.

    These are:

    • Household and housing questionnaire
    • Household expenditure questionnaires
    • Daily expenditure booklet

    In the other three, individual information is recorded for people:

    • Questionnaire for people aged 12 or over
    • Questionnaire for people under 12 years of age
    • Questionnaire for household businesses

    Cleaning operations

    Capture activities

    The capture consisted of transferring the information from the questionnaires that were fully answered to electronic means through IKTAN, in accordance with the procedures established for the capture process of the ENIGH 2018.

    The Person in Charge of Capture and Validation, together with his work team, began the capture of the questionnaires collected by each Interviewer, organized by packages of questionnaires of each page with the result of a complete interview, following the established order:

    • Household and housing questionnaire. • Questionnaires for people under 12 years of age. • Questionnaires for people aged 12 and over. • Questionnaires for home businesses. • Household expenditure questionnaire. • Daily expenses booklet.

    In addition, the IKTAN made it possible to record and know the progress or conclusion of workloads.

    Validation activities

    In parallel to the capture, the state coordination

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2018). ACS Median Household Income Variables - Centroids [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/cab3fe0ee8304888a47a58355a472904
Organization logo

ACS Median Household Income Variables - Centroids

Explore at:
Dataset updated
Oct 22, 2018
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This layer shows median household income by race and by age of householder. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Search
Clear search
Close search
Google apps
Main menu