In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.
Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.
Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
The Household Income, Expenditure and Consumption Survey (HIECS) is of great importance among other household surveys conducted by statistical agencies in various countries around the world. This survey provides a large amount of data to rely on in measuring the living standards of households and individuals, as well as establishing databases that serve in measuring poverty, designing social assistance programs, and providing necessary weights to compile consumer price indices, considered to be an important indicator to assess inflation.
The HIECS 2008/2009 is the tenth Household Income, Expenditure and Consumption Survey that was carried out in 2008/2009, among a long series of similar surveys that started back in 1955.
The survey main objectives are: - To identify expenditure levels and patterns of population as well as socio- economic and demographic differentials. - To estimate the quantities, values of commodities and services consumed by households during the survey period to determine the levels of consumption and estimate the current demand which is important to predict future demands. - To measure mean household and per-capita expenditure for various expenditure items along with socio-economic correlates. - To define percentage distribution of expenditure for various items used in compiling consumer price indices which is considered important indicator for measuring inflation. - To define mean household and per-capita income from different sources. - To provide data necessary to measure standard of living for households and individuals. Poverty analysis and setting up a basis for social welfare assistance are highly dependant on the results of this survey. - To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas. - To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure. - To study the relationships between demographic, geographical, housing characteristics of households and their income and expenditure for commodities and services. - To provide data necessary for national accounts especially in compiling inputs and outputs tables. - To identify consumers behavior changes among socio-economic groups in urban and rural areas. - To identify per capita food consumption and its main components of calories, proteins and fats according to its sources and the levels of expenditure in both urban and rural areas. - To identify the value of expenditure for food according to sources, either from household production or not, in addition to household expenditure for non food commodities and services. - To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles ...) in urban and rural areas. - To identify the percentage distribution of income recipients according to some background variables such as housing conditions, size of household and characteristics of head of household.
Compared to previous surveys, the current survey experienced certain peculiarities, among which: 1- Doubling the number of area segments from 1200 in the previous survey to 2526 segments with decreasing the number of households selected from each segment to be (20) households instead of (40) in the previous survey to ensure appropriate representatives in the society. 2- Changing the survey period to 15 days instead of one month in the previous one 200412005, to lighten the respondent burden and encourage more cooperation. 3- Adding some additional questions: a- Participation or the benefits gained from pension and social security system. b- Participation in health insurance system. 4- Increasing quality control Procedures especially for fieldwork to ensure data accuracy and avoid any errors in suitable time.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.
Covering a sample of urban and rural areas in all the governorates.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
The sample of HIECS, 2008-2009 is a two-stage stratified cluster sample, approximately self-weighted, of nearly 48000 households. The main elements of the sampling design are described in the following.
1- Sample Size
It has been deemed important to retain the same sample size of the previous two HIECS rounds. Thus, a sample of about 48000 households has been considered. The justification of maintaining the sample size at this level is to have estimates with levels of precision similar to those of the previous two rounds: therefore trend analysis with the previous two surveys will not be distorted by substantial changes in sampling errors from round to another. In addition, this relatively large national sample implies proportional samples of reasonable sizes for smaller governorates. Nonetheless, over-sampling has been introduced to raise the sample size of small governorates to about 1000 households As a result, reasonably precise estimates could be extracted for those governorates. The over-sampling has resulted in a slight increase in the national sample to 48658 households.
2- Cluster size
An important lesson learned from the previous two HIECS rounds is that the cluster size applied in both surveys is found to be too large to yield an accepted design effect estimates. The cluster size was 40 households in the 2004-2005 round, descending from 80 households in the 1999-2000 round. The estimates of the design effect (deft) for most survey measures of the latest round were extraordinary large. As a result, it has been decided to decrease the cluster size to only 19 households (20 households in urban governorates to account for anticipated non-response in those governorates: in view of past experience non-response is almost nil in rural governorates).
A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among the documentation materials published in both Arabic and English.
Face-to-face [f2f]
Three different questionnaires have been designed as following: 1- Expenditure and consumption questionnaire. 2- Diary questionnaire for expenditure and consumption. 3- Income questionnaire.
In designing the questionnaires of expenditure, consumption and income, we were taking into our consideration the following: - Using the recent concepts and definitions of International Labor Organization approved in the International Convention of Labor Statisticians held in Geneva, 2003. - Using the recent Classification of Individual Consumption according to Purpose (COICOP). - Using more than one approach of expenditure measurement to serve many purposes of the survey.
A brief description of each questionnaire is given next:
This questionnaire comprises 14 tables in addition to identification and geographic data of household on the cover page. The questionnaire is divided into two main sections.
Section one: Household schedule and other information. It includes: - Demographic characteristics and basic data for all household individuals consisting of 18 questions for every person. - Members of household who are currently working abroad. - The household ration card. - The main outlets that provide food and beverage. - Domestic and foreign tourism. - The housing conditions including 15 questions. - Means of transportation used to go to work or school. - The household possession of appliances and means of transportation. - This section includes some questions which help to define the social and economic level of households which in turn, help interviewers to check the plausibility of expenditure, consumption and income data.
Section two: Expenditure and consumption data It includes 14 tables as follows: - The quantity and value of food and beverages commodities actually consumed. - The quantity and value of the actual consumption of alcoholic beverages, tobacco and narcotics. - The quantity and value of the clothing and footwear. - The household expenditure for housing. - The household expenditure for furnishings, household equipment and routine maintenance of the house. - The household expenditure for health care services. - The household expenditure for transportation. - The household
In 2024, the average annual per capita disposable income of rural households in China was approximately ****** yuan, roughly ** percent of the income of urban households. Although living standards in China’s rural areas have improved significantly over the past 20 years, the income gap between rural and urban households is still large. Income increase of China’s households From 2000 to 2020, disposable income per capita in China increased by around *** percent. The fast-growing economy has inevitably led to the rapid income increase. Furthermore, inflation has been maintained at a lower rate in recent years compared to other countries. While the number of millionaires in China has increased, many of its population are still living in humble conditions. Consequently, the significant wealth gap between China’s rich and poor has become a social problem across the country. However, in recent years rural areas have been catching up and disposable income has been growing faster than in the cities. This development is also reflected in the Gini coefficient for China, which has decreased since 2008. Urbanization in China The urban population in China surpassed its rural population for the first time in 2011. In fact, the share of the population residing in urban areas is continuing to increase. This is not surprising considering remote, rural areas are among the poorest areas in China. Currently, poverty alleviation has been prioritized by the Chinese government. The measures that the government has taken are related to relocation and job placement. With the transformation and expansion of cities to accommodate the influx of city dwellers, neighboring rural areas are required for the development of infrastructure. Accordingly, land acquisition by the government has resulted in monetary gain by some rural households.
The 2006 Family Income and Expenditure Survey (FIES) had the following primary objectives:
1) to gather data on family income and family expenditure and related information affecting income and expenditure levels and patterns in the Philippines; 2) to determine the sources of income and income distribution, levels of living and spending patterns, and the degree of inequality among families; 3) to provide benchmark information to update weights for the estimation of consumer price index; and 4) to provide information for the estimation of the country's poverty threshold and incidence.
The 2003 Master Sample (MS) considers the country's 17 administrative regions as the sampling domains. A domain is referred to as a subdivision of the country for which estimates with adequate level of precision are generated. It must be noted that while there is demand for data at the provincial level (and to some extent municipal and barangay levels), the provinces were not treated as sampling domains because there are more than 80 provinces which would entail a large resource requirement.
The unit of analysis is the family. A family consists of the household head, spouse, unmarried children, ever-married children, son-in-law/daughter-in-law, parents of the head/spouse and other relatives who are members of the household.
In households where there are two or more persons not related to each other by blood, marriage or adoption, only the income and expenditure of the member who is considered as the household head is included.
Institutional population is not within the scope of the survey.
All households and members of households nationwide
Sample survey data [ssd]
The 2003 Master Sample (MS) considers the country's 17 administrative regions as defined in Executive Orders (EO) 36 and 131 as the sampling domains. A domain is referred to as a subdivision of the country for which estimates with adequate level of precision are generated. It must be noted that while there is demand for data at the provincial level (and to some extent municipal and barangay levels), the provinces were not treated as sampling domains because there are more than 80 provinces which would entail a large resource requirement.
As in most household surveys, the 2003 MS made use of an area sample design. For this purpose, the Enumeration Area Reference File (EARF) of the 2000 Census of Population and Housing (CPH) was utilized as sampling frame. The EARF contains the number of households by enumeration area (EA) in each barangay.
This frame was used to form the primary sampling units (PSUs). With consideration of the period for which the 2003 MS will be in use, the PSUs were formed/defined as a barangay or a combination of barangays with at least 500 households.
The 2003 MS considers the 17 regions of the country as the primary strata. Within each region, further stratification was performed using geographic groupings such as provinces, highly urbanized cities (HUCs), and independent component cities (ICCs). Within each of these substrata formed within regions, the PSUs were further stratified, to the extent possible, using the proportion of strong houses (PSTRONG), indicator of engagement in agriculture of the area (AGRI), and a measure of per capita income (PERCAPITA) as stratification factors.
The 2003 MS consists of a sample of 2,835 PSUs. The entire MS was divided into four sub-samples or independent replicates, such as a quarter sample contains one fourth of the total PSUs; a half sample contains one-half of the four sub-samples or equivalent to all PSUs in two replicates. The final number of sample PSUs for each domain was determined by first classifying PSUs as either selfrepresenting (SR) or non-self-representing (NSR). In addition, to facilitate the selection of sub-samples, the total number of NSR PSUs in each region was adjusted to make it a multiple of 4. SR PSUs refers to a very large PSU in the region/domain with a selection probability of approximately 1 or higher and is outright included in the MS; it is properly treated as a stratum; also known as certainty PSU. NSR PSUs refers to a regular too small sized PSU in a region/domain; also known as non certainty PSU. The 2003 MS consists of 330 certainty PSUs and 2,505 non-certainty PSUs. To have some control over the sub-sample size, the PSUs were selected with probability proportional to some estimated measure of size. The size measure refers to the total number of households from the 2000 CPH. Because of the wide variation in PSU sizes, PSUs with selection probabilities greater than 1 were identified and were included in the sample as certainty selections.
At the second stage, enumeration areas (EAs) were selected within sampled PSUs, and at the third stage, housing units were selected within sampled EAs. Generally, all households in sampled housing units were enumerated, except for few cases when the number of households in a housing unit exceeds three. In which case, a sample of three households in a sampled housing unit was selected at random with equal probability.
An EA is defined as an area with discernable boundaries within barangays consisting of about 150 contiguous households. These EAs were identified during the 2000 CPH. A housing unit, on the other hand, is a structurally separate and independent place of abode which, by the way it has been constructed, converted, or arranged, is intended for habitation by a household.
The 2006 FIES involved the interview of a national sample of about 51,000 sample households deemed sufficient to gather data on family income and family expenditure and related information affecting income and expenditure levels and patterns in the Philippines at the national and regional level. The sample households covered in the survey were the same households interviewed in the July 2006 and January 2007 round of the LFS.
The estimates from the 2006 FIES include results of the first FIES visit for the NCR based on questionnaires recovered from fire. The fire that hit the NCR’s Statistics Office on October 3, 2006 damaged 58 percent of the total questionnaires for the FIES first visit. Questionnaires that were encoded and processed cover around 42 percent of these questionnaires. In the preliminary results, values for the burned questionnaires were imputed using a ratio which requires data from the recovered questionnaires and data from corresponding questionnaires from the second visit. The ratio was computed by getting the sums of the total income and total expenditure in the recovered questionnaires from the first visit and the sums of the same data from corresponding second visit questionnaires and then by dividing the sums from the second visit by the sums from the first visit. The annual estimates on income and expenditure for NCR were computed by dividing the second visit values by the computed ratio. For the final results, the annual estimates for the NCR were computed by multiplying by 2 the second visit data. This imputation procedure was opted after it has been established that there was no significant difference between using the ratio and the multiplier ‘2’.
Face-to-face [f2f]
The 2006 FIES adopts a questionnaire design wherein separate questionnaire with the same sets of questions for both visits will be used. The sample household is interviewed in two separate operations each time using the half-year period preceding the interview as reference period. This scheme envisions to improve the quality of data gathered since it minimizes memory bias of respondents and at the same time captures the seasonality of income and expenditure patterns. The use of separate questionnaire with the same set of questions for both visits was used starting 2003 FIES. In previous FIES, the same set of questions for each semester (two enumeration periods) were contained in one questionnaire.
To further reduce memory bias, the concept of "average week" consumption for all food items shall be utilized for the 2006 FIES. Moreover, the reference period for Fuel, Light and Water, Transportation and Communication, Household Operations and Personal Care and Effects is limited to the past month and in some specified cases, the concept of average month consumption shall be used. For all other expenditure groups, the past six months shall be used as reference period.
The questionnaire has four main parts consisting of the following:
Part I. Identification and Other Information (page 1-3) (Geographic Identification, Other Information and Particulars about the Family)
Part II. Expenditures (page 4-45) Section A. Food, Alcoholic Beverages and Tobacco Section B. Fuel, Light and Water, Transportation and Communication, and Household Operations Section C. Personal Care and Effects, Clothing Footwear and Other Wear Section D. Education, Recreation, and Medical Care Section E. Furnishings and Equipment Section F. Taxes Section G. Housing, House Maintenance and Minor Repairs Section H. Miscellaneous Expenditures Section I. Other Disbursements
Part III. Income (page 46-55) Section A. Salaries and Wages from Employment Section B. Net Share of Crops, Fruits and Vegetables Produced and/or Livestock and Poultry Raised by Other Households Section C. Other Sources of Income Section D. Other Receipts Section
Household Income and Expenditure Survey (HIES) collects a wealth of information on HH income and expenditure, such as source of income by industry, HH expenditure on goods and services, and income and expenditure associated with subsistence production and consumption. In addition to this, HIES collects information on sectoral and thematic areas, such as education, health, labour force, primary activities, transport, information and communication, transfers and remittances, food expenditure (as a proxy for HH food consumption and nutrition analysis), and gender.
The Pacific Islands regionally standardized HIES instruments and procedures were adopted by the Government of Tokelau for the 2015/16 Tokelau HIES. These standards were designed to feed high-quality data to HIES data end users for:
The data allow for the production of useful indicators and information on the sectors covered in the survey, including providing data to inform indicators under the UN Sustainable Development Goals (SDGs). This report, the above listed outputs, and any thematic analyses of HIES data, collectively provide information to assist with social and economic planning and policy formation.
National coverage.
Households and Individuals.
The universe of the 2015/16 Tokelau Household Income and Expenditure Survey (HIES) is all occupied households (HHs) in Tokelau. HHs are the sampling unit, defined as a group of people (related or not) who pool their money, cook and eat together. It is not the physical structure (dwelling) in which people live. The HH must have been living in Tokelau for a period of six months, or have had the intention to live in Tokelau for a period of twelve months in order to be included in the survey.
Household members covered in the survey include: -usual residents currently living in the HH; -usual residents who are temporarily away (e.g., for work or a holiday); -usual residents who are away for an extended period, but are financially dependent on, or supporting, the HH (e.g., students living in school dormitories outside Tokelau, or a provider working overseas who hasn't formed or joined another HH in the host country) and plan to return; -persons who frequently come and go from the HH, but consider the HH being interviewed as their main place of stay; -any person who lives with the HH and is employed (paid or in-kind) as a domestic worker and who shares accommodation and eats with the host HH; and -visitors currently living with the HH for a period of six months or more.
Sample survey data [ssd]
The 2015/16 Tokelau Household Income and Expenditure Survey (HIES) sampling approach was designed to generate reliable results at the national level. That is, the survey was not designed to produce reliable results at any lower level, such as for the three individual atolls. The reason for this is partly budgetary constraint, but also because the HIES will serve its primary objectives with a sample size that will provide reliable national aggregates.
The sampling frame used for the random selection of HHs was from December 2013, i.e. the HH listing updated in the 2013 Population Count.
The 2015/16 Tokelau HIES had a quota of 120 HHs. The sample covered all three populated atolls in Tokelau (Fakaofo, Nukunonu and Atafu) and the sample was evenly allocated between the three atoll clusters (i.e., 40 HHs per atoll surveyed over a ten-month period). The HHs within each cluster were randomly selected using a single-stage selection process.
In addition to the 120 selected HHs, 60 HHs (20 per cluster) were randomly selected as replacement HHs to ensure that the desired sample was met. The replacement HHs were only approached for interview in the case that one of the primarily selected HHs could not be interviewed.
Face-to-face [f2f]
The questionnaires for this Household Income and Expenditure Survey (HIES) are composed of a diary and 4 modules published in English and in Tokelauan. All English questionnaires and modules are provided as external resources.
Here is the list of the questionnaires for this 2015-2016 HIES: - Diary: week 1 an 2; - Module 1: Demographic information (Household listing, Demographic profile, Activities, Educational status, Communication status...); - Module 2: Household expenditure (Housing characteristics, Housing tenure expenditure, Utilities and communication, Land and home...etc); - Module 3: Individual expenditure (Education, Health, Clothing, Communication, Luxury items, Alcohonl & tobacco); - Module 4: Household and individual income (Wages and salary, Agricultural and forestry activities, Fishing gathering and hunting activities, livestock and aquaculture activities...etc).
All inconsistencies and missing values were corrected using a variety of methods: 1. Manual correction: verified on actual questionnaires (double check on the form, questionnaire notes, local knowledge, manual verifications) 2. Subjective: the answer is obvious and be deducted from other questions 3. Donor hot deck: the value is imputed based on similar characteristics from other HHs or individuals (see example below) 4. Donor median: the missing or outliers were imputed from similar items reported median value 5. Record deletion: the record was filled by mistake and had to be removed.
Several questions used the hotdeck method of imputation to impute missing and outlying values. This method can use one to three dimensions and is dependent on which section and module the question was placed. The process works by placing correct values in a coded matrix. For example in Tokelau the “Drink Alcohol” questions used a three dimension hotdeck to store in-range reported data. The constraining dimensions used are AGE, SEX and RELATIONSHIP questions and act as a key for the hotdeck. On the first pass the valid yes/no responses are place into this 3-dimension hotdeck. On the second pass the data in the matrix is updated one person at a time. If a “Drink Alcohol” question contained a missing response then the person's coded age, sex and relationship key is searched in the “valid” matrix. Once a key is found the result contained in the matrix is imputed for the missing value. The first preferred method to correct missing or outlying data is the manual correction (trying to obtain the real value, it could have been miss-keyed or reported incorrectly). If the manual correction was unsuccessful at correcting the values, a subjective approach was used, the next method would be the hotdeck, then the donor median and the last correction is the record deletion. The survey procedure and enumeration team structure allow for in-round data entry, which gives the field staff the opportunity to correct the data by manual review and by using the entry system-generated error messages. This process was designed to improve data quality. The data entry system used system-controlled entry, interactive coding and validity and consistency checks. Despite the validity and consistency checks put in place, the data still required cleaning. The cleaning was a two-stage process, which included manual cleaning while referencing the questionnaire, whereas the second stage involved computer-assisted code verification and, in some cases, imputation. Once the data were clean, verified and consistent, they were recoded to form a final aggregated database, consisting of: Person level record - characteristics of every (household) HH member, including activity and education profile; HH level record - characteristics of the dwelling and access to services; Final aggregated income - all HH income streams, by category and type; Final aggregated expenditure - all HH expenditure items, by category and type.
The cleaning was a two-stage process, which included manual cleaning while referencing the questionnaire, whereas the second stage involved computer-assisted code verification and, in some cases, imputation. Once the data were clean, verified and consistent, they were recoded to form a final aggregated database.
Overall, 99% of the response rate objective was achieved.
Refer to Appendix 2 of the Tokelau 2015/2016 Household Income and Expenditure Survey report attached as an external resource.
U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.
The Household Income, Expenditure and Consumption Survey (HIECS) is of great importance among other household surveys conducted by statistical agencies in various countries around the world. This survey provides a large amount of data to rely on in measuring the living standards of households and individuals, as well as establishing databases that serve in measuring poverty, designing social assistance programs, and providing necessary weights to compile consumer price indices, considered to be an important indicator to assess inflation. The first survey that covered all the country governorates was carried out in 1958/1959 followed by a long series of similar surveys. The current survey, HIECS 2012/2013, is the eleventh in this long series. Starting 2008/2009, Household Income, Expenditure and Consumption Surveys were conducted each two years instead of five years. This would enable better tracking of the rapid changes in the level of the living standards of the Egyptian households. CAPMAS started in 2010/2011 to follow a panel sample of around 40% of the total household sample size. The current survey is the second one to follow a panel sample. This procedure will provide the necessary data to extract accurate indicators on the status of the society. The CAPMAS also is pleased to disseminate the results of this survey to policy makers, researchers and scholarly to help in policy making and conducting development related researches and studies The survey main objectives are: - To identify expenditure levels and patterns of population as well as socio- economic and demographic differentials. - To measure average household and per-capita expenditure for various expenditure items along with socio-economic correlates. - To Measure the change in living standards and expenditure patterns and behavior for the individuals and households in the panel sample, previously surveyed in 2008/2009, for the first time during 12 months representing the survey period. - To define percentage distribution of expenditure for various items used in compiling consumer price indices which is considered important indicator for measuring inflation. - To estimate the quantities, values of commodities and services consumed by households during the survey period to determine the levels of consumption and estimate the current demand which is important to predict future demands. - To define average household and per-capita income from different sources. - To provide data necessary to measure standard of living for households and individuals. Poverty analysis and setting up a basis for social welfare assistance are highly dependent on the results of this survey. - To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas. - To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure. - To study the relationships between demographic, geographical, housing characteristics of households and their income. - To provide data necessary for national accounts especially in compiling inputs and outputs tables. - To identify consumers behavior changes among socio-economic groups in urban and rural areas. - To identify per capita food consumption and its main components of calories, proteins and fats according to its nutrition components and the levels of expenditure in both urban and rural areas. - To identify the value of expenditure for food according to its sources, either from household production or not, in addition to household expenditure for non-food commodities and services. - To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles ,…etc) in urban and rural areas that enables measuring household wealth index. - To identify the percentage distribution of income earners according to some background variables such as housing conditions, size of household and characteristics of head of household. - To provide a time series of the most important data related to dominant standard of living from economic and social perspective. This will enable conducting comparisons based on the results of these time series. In addition to, the possibility of performing geographical comparisons.
Compared to previous surveys, the current survey experienced certain peculiarities, among which :
1) The total sample of the current survey (24.9 thousand households) is divided into two sections:
a -A new sample of 16.1 thousand households. This sample was used to study the geographic differences between urban governorates, urban and rural areas, and frontier governorates as well as other discrepancies related to households characteristics and household size, head of the household's education status, etc.
b -A panel sample of 2008/2009 survey data of around 8.8 thousand households were selected to accurately study the changes that may have occurred in the households' living standards over the period between the two surveys and over time in the future since CAPMAS will continue to collect panel data for HIECS in the coming years.
2) Some additional questions that showed to be important based on previous surveys results, were added to the survey questionnaire, such as: a - The extent of health services provided to monitor the level of services available in the Egyptian society. By collecting information on the in-kind transfers, the household received during the year; in order to monitor the assistance the household received from different sources government, association,..etc. b - Identifying the main outlet of fabrics, clothes and footwear to determine the level of living standards of the household.
3) Quality control procedures especially for fieldwork are increased, to ensure data accuracy and avoid any errors in suitable time, as well as taking all the necessary measures to guarantee that mistakes are not repeated, with the application of the principle of reward and punishment.
National coverage, covering a sample of urban and rural areas in all the governorates.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
The sample of HIECS 2012/2013 is a self-weighted two-stage stratified cluster sample, of around 24.9 households. The main elements of the sampling design are described in the following:
Sample Size The sample has been proportionally distributed on the governorate level between urban and rural areas, in order to make the sample representative even for small governorates. Thus, a sample of about 24863 households has been considered, and was distributed between urban and rural with the percentages of 45.4 % and 54.6, respectively. This sample is divided into two parts: a) A new sample of 16094 households selected from main enumeration areas. b) A panel sample of 8769 households (selected from HIECS 2010/2011 and the preceding survey in 2008/2009).
Cluster Size The cluster size in the previous survey has been decreased compared to older surveys since large cluster sizes previously used were found to be too large to yield accepted design effect estimates (DEFT). As a result, it has been decided to use a cluster size of only 8 households (In HIECS 2011/2012 a cluster size of 16 households was used). While the cluster size for the panel sample was 4 households.
Core Sample The core sample is the master sample of any household sample required to be pulled for the purpose of studying the properties of individuals and families. It is a large sample and distributed on urban and rural areas of all governorates. It is a representative sample for the individual characteristics of the Egyptian society. This sample was implemented in January 2012 and its size reached more than 1 million household (1004800 household) selected from 5024 enumeration areas distributed on all governorates (urban/rural) proportionally with the sample size (the enumeration area size is around 200 households). The core sample is the sampling frame from which the samples for the surveys conducted by CAPMAS are pulled, such as the Labor Force Surveys, Income, Expenditure And Consumption Survey, Household Urban Migration Survey, ...etc, in addition to other samples that may be required for outsources.
New Households Sample: 1000 sample areas were selected across all governorates (urban/rural) using a proportional technique with the sample size. The number required for each governorate (urban/rural) was selected from the enumeration areas of the core sample using a systematic sampling technique.A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among external resources in Arabic.
Given the sample design, these weights will vary to some extent for the over-sampled governorates compared with the others. It is also important to calculate measures of sampling variability for key survey estimates.
Face-to-face [f2f]
Three different questionnaires have been designed as following: 1) Expenditure and Consumption Questionnaire. 2) Diary Questionnaire (Assisting questionnaire).
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
The Central Agency for Public Mobilization And Statistics (CAPMAS) is responsible for Implementation of statistics and data collection of various kinds, specializations, levels and performs many of the general censuses and economic surveys. One of the key aims of CAPMAS is to complete unified and comprehensive statistical work to keep up with all developments in various aspects of life and unifying standards, concepts and definitions of statistical terms, development of comprehensive information system as a tool for planning and development in all fields
The Household Income, Expenditure and Consumption Survey (HIECS) is one important source to rely on for economic, social and demographic indicators, that are conducted every few years.
The HIECS 1999/2000 is the seventh Household Income, Expenditure and Consumption Survey that was carried out in 1999/2000, among a long series of similar surveys that started back in 1955.
The survey main objectives are: - To estimate the quantities, values of commodities and services consumed by households during the survey period to estimate the current demand and determine the levels of consumption for commodities and services essential for national planning. - To measure mean household and per-capita expenditure on different goods and services in urban and rural areas. - To define mean household and per-capita income. - To define percentage distribution of expenditure for various expenditure items used in compiling consumer price indices for different expenditure levels on urban and rural levels. - To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas and different levels of total expenditure. - To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure. - To study the relationships between demographic, geographical, housing characteristics of households and their income and expenditure for commodities and services, in urban and rural areas. - To provide data necessary for national accounts especially in compiling inputs and outputs tables, and commodity balances. - To provide updated data on Income, Expenditure and Consumption estimates in 1999/2000 to serve planners, investors and researchers. - To identify expenditure levels and patterns of population and consumers behavior in urban and rural areas. - To identify per capita food consumption and its main components of calories, proteins and fats according to its sources and the levels of expenditure in both urban and rural areas. - To identify the value of expenditure for food according to sources, either from household production or not, in addition to household expenditure for non food commodities and services. - To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles ...) in urban and rural areas. - To identify the distribution of households according to the number of members, compared to the number of rooms occupied by the household. - To provide the distribution of households by income categories, income sources and number of income earners. - To provide the distribution of number of waged workers in the household by their income range, economic activity, sector and main occupation.
A committee consisting of Experts of the Central Agency for Public Mobilization and Statistics, Experts of the Ministry of Planning, Experts from NIB and Egyptian university professors, has been formed based on the decree number (28) for the year 1998 of the Minister of State for Planning and International Cooperation, to study and prepare Expenditure and Consumption Estimates Survey in the Arab Republic of Egypt and follow up on the implementation of the research procedures.
A timetable has been prepared for the implementation of every stage of this survey, which started in 01/04/1999. It was taken into account in this timetable the coordination between the work phases, so that these stages were conducted in parallel, where the coding and office audit would start immediately upon completion of the monthly data collection phase. Data for which forms are completed, coded and reviewed was entered on personal computers during the same month.
Specialized working groups were formed for each stage of the survey work and trained according to intensive training programs for each phase. Those stages were supervised by experts of the Central Agency for Public Mobilization and Statistics in the field of family research.
All collected data has been prepared on personal computers within the statistics division where 22 of the latest generations of devices were used, on which was installed the most updated software for data entry and validation.
The survey management prepared a report for essential commodities to indentify the minimum and maximum price for those goods during each month of the survey. This report was sent to the statistical offices in all governorates to be filled from their sources by auditors, supervisors and delivered to the survey management with all forms collected to be used during the central office audit stage.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.
Covering a sample of urban and rural areas in all the governorates.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
A large sample representative for urban and rural areas in all governorates has been designed by CAPMAS in March 1999 for the HIECS 1999/2000.
In previous surveys, CAPMAS used to select a sample of around 15000 households from 500 Primary Sampling Units (PSUs). For HIECS 1999/2000, a sample of about 48000 households has been considered from 600 PSUs, 28800 households in urban (360 PSUs) and 19200 households in rural (240 PSUs), distributed over 12 months (4000 households monthly).
The master sample is a strata-area-unbiased-probability proportion to size sample. The 1996 census data, the population estimates for the year 2000, as well as the number of shiakha/village in each governorate were used for the distribution of PSUs on different strata during the first sampling stage. The sampling unit in the first sampling stage was taken to be the PSU consisting of at least 1500 households in urban areas and 1000 households in rural areas. While the sampling unit for the second stage whether in urban or rural areas was the household.
A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among the documentation materials published in both Arabic and English.
Face-to-face [f2f]
Three different questionnaires have been designed as following: 1- Expenditure and consumption questionnaire 1999/2000. 2- Diary questionnaire for expenditure and consumption 1999/2000. 3- Income questionnaire.
A brief description of each questionnaire is given next:
This questionnaire comprises 14 tables in addition to identification and geographic data of household on the cover page. The questionnaire is divided into two main sections. Section one: Basic information which includes: - Demographic characteristics and basic data for all household individuals consisting of 15 questions for every person, in a table of 10 columns (1 column per person) on two pages so that each table contains data for 20 persons. - Household visitors during the month of the survey. - Members of household who are currently working abroad. - The household ration card. - The housing conditions including 18 questions. - The household possession of appliances including 23 type of appliance. This section includes some questions which help to define the socio-economic level of households which in turn, help interviewers to check the plausibility of expenditure, consumption and income data.
Section two: Expenditure and consumption data It includes 14 tables as follows: - The quantity and value of food and beverages commodities actually consumed. - The quantity and value of the actual consumption of tobacco and narcotics. - The quantity and value of the clothing and footwear. - The household expenditure for housing. - The household expenditure for furnishings, household equipment and services. - The household
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The household economic survey (HES) is an annual survey designed to measure the economic wellbeing of New Zealanders. HES has three components: HES income, HES expenditure, and HES net worth. - HES income is the main vehicle, and it is run every year. It includes household income, housing costs, and material wellbeing – this is ‘core’ HES. - HES expenditure includes additional components – an expenditure diary and an expanded household expenditure questionnaire. It runs every three years. - HES net worth includes additional questions on household assets and liabilities. It also runs every three years.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Between 2018 and 2019 the American Community Survey retirement income question changed. These changes resulted in an increase in both the number of households reporting retirement income and higher aggregate retirement income at the national level. For more information see Changes to the Retirement Income Question ..The categories for relationship to householder were revised in 2019. For more information see Revisions to the Relationship to Household item..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
analyze the survey of income and program participation (sipp) with r if the census bureau's budget was gutted and only one complex sample survey survived, pray it's the survey of income and program participation (sipp). it's giant. it's rich with variables. it's monthly. it follows households over three, four, now five year panels. the congressional budget office uses it for their health insurance simulation . analysts read that sipp has person-month files, get scurred, and retreat to inferior options. the american community survey may be the mount everest of survey data, but sipp is most certainly the amazon. questions swing wild and free through the jungle canopy i mean core data dictionary. legend has it that there are still species of topical module variables that scientists like you have yet to analyze. ponce de león would've loved it here. ponce. what a name. what a guy. the sipp 2008 panel data started from a sample of 105,663 individuals in 42,030 households. once the sample gets drawn, the census bureau surveys one-fourth of the respondents every four months, over f our or five years (panel durations vary). you absolutely must read and understand pdf pages 3, 4, and 5 of this document before starting any analysis (start at the header 'waves and rotation groups'). if you don't comprehend what's going on, try their survey design tutorial. since sipp collects information from respondents regarding every month over the duration of the panel, you'll need to be hyper-aware of whether you want your results to be point-in-time, annualized, or specific to some other period. the analysis scripts below provide examples of each. at every four-month interview point, every respondent answers every core question for the previous four months. after that, wave-specific addenda (called topical modules) get asked, but generally only regarding a single prior month. to repeat: core wave files contain four records per person, topical modules contain one. if you stacked every core wave, you would have one record per person per month for the duration o f the panel. mmmassive. ~100,000 respondents x 12 months x ~4 years. have an analysis plan before you start writing code so you extract exactly what you need, nothing more. better yet, modify something of mine. cool? this new github repository contains eight, you read me, eight scripts: 1996 panel - download and create database.R 2001 panel - download and create database.R 2004 panel - download and create database.R 2008 panel - download and create database.R since some variables are character strings in one file and integers in anoth er, initiate an r function to harmonize variable class inconsistencies in the sas importation scripts properly handle the parentheses seen in a few of the sas importation scripts, because the SAScii package currently does not create an rsqlite database, initiate a variant of the read.SAScii
function that imports ascii data directly into a sql database (.db) download each microdata file - weights, topical modules, everything - then read 'em into sql 2008 panel - full year analysis examples.R< br /> define which waves and specific variables to pull into ram, based on the year chosen loop through each of twelve months, constructing a single-year temporary table inside the database read that twelve-month file into working memory, then save it for faster loading later if you like read the main and replicate weights columns into working memory too, merge everything construct a few annualized and demographic columns using all twelve months' worth of information construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half, again save it for faster loading later, only if you're so inclined reproduce census-publish ed statistics, not precisely (due to topcoding described here on pdf page 19) 2008 panel - point-in-time analysis examples.R define which wave(s) and specific variables to pull into ram, based on the calendar month chosen read that interview point (srefmon)- or calendar month (rhcalmn)-based file into working memory read the topical module and replicate weights files into working memory too, merge it like you mean it construct a few new, exciting variables using both core and topical module questions construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half reproduce census-published statistics, not exactly cuz the authors of this brief used the generalized variance formula (gvf) to calculate the margin of error - see pdf page 4 for more detail - the friendly statisticians at census recommend using the replicate weights whenever possible. oh hayy, now it is. 2008 panel - median value of household assets.R define which wave(s) and spe cific variables to pull into ram, based on the topical module chosen read the topical module and replicate weights files into working memory too, merge once again construct a replicate-weighted complex sample design with a...
FOCUSONLONDON2010:INCOMEANDSPENDINGATHOME Household income in London far exceeds that of any other region in the UK. At £900 per week, London’s gross weekly household income is 15 per cent higher than the next highest region. Despite this, the costs to each household are also higher in the capital. Londoners pay a greater amount of their income in tax and national insurance than the UK average as well as footing a higher bill for housing and everyday necessities. All of which leaves London households less well off than the headline figures suggest. This chapter, authored by Richard Walker in the GLA Intelligence Unit, begins with an analysis of income at both individual and household level, before discussing the distribution and sources of income. This is followed by a look at wealth and borrowing and finally, focuses on expenditure including an insight to the cost of housing in London, compared with other regions in the UK. See other reports from this Focus on London series. PRESENTATION: This interactive presentation finds the answer to the question, who really is better off, an average London or UK household? This analysis takes into account available data from all types of income and expenditure. Click on the link to access.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The household economic survey (HES) is an annual survey designed to measure the economic wellbeing of New Zealanders. HES has three components: HES income, HES expenditure, and HES net worth. - HES income is the main vehicle, and it is run every year. It includes household income, housing costs, and material wellbeing – this is ‘core’ HES. - HES expenditure includes additional components – an expenditure diary and an expanded household expenditure questionnaire. It runs every three years. - HES net worth includes additional questions on household assets and liabilities. It also runs every three years.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Between 2018 and 2019 the American Community Survey retirement income question changed. These changes resulted in an increase in both the number of households reporting retirement income and higher aggregate retirement income at the national level. For more information see Changes to the Retirement Income Question ..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The Household Budget Survey conducted by the State Statistical Committee of the Republic of Azerbaijan is the main source of information for analysis of living standards of separate population groups, income differentiation and poverty levels in the country. The survey was introduced in 2001 and has been carried out annually since then.
The Azerbaijan HBS is based on a random probability sample, which was designed to give nationally representative results and allow comparison between main regions of the country and different categories of the population. Approximately 8,700 households are interviewed annually. The annual sample is divided into about 2,200 households per quarter, with a full rotation of households occurring each quarter.
The survey collects information on household income and expenditure, housing conditions, ownership of consumer durables, access to agricultural land and demographic characteristics of household members.
Results of HBS 2001 served as the basis for estimates of poverty in Azerbaijan, using a relative poverty line and a new revised absolute poverty line. Using an absolute poverty line of 120,000 AZM (25.8 USD) per capita per month, it was estimated that 49% of the country population was living in poverty. Using a relative poverty line set at 72,000 AZM (15.5 USD) it was estimated that 17% of the population was living in extreme poverty.
National
A household is defined as a single person or a group of persons with a common budget and residence (house, flat, etc.). The members of the household may not be relatives even if living together and sharing a common household. Persons living in institutional households (elderly houses, hospitals, military barracks etc.) are excluded from the survey.
Since the first half of 90-ties about 800,000 persons migrated within Azerbaijan because of the war in Nagorno-Karabach region. There have been some 250,000 refugees mainly from the other republics of previous USSR, too. This population part is included in the sampling frame according to their actual living place at the time of the population census in 1999.
Sample survey data [ssd]
The sample of Azerbaijan HBS is based on territorial random probability principles. This allows stratifying the population by urban/rural category and by geographical characteristics (8 regions - economic zones). Taking into account that one fourth of the population is concentrated in the capital city Baku this population was included into a separate stratum.
Data from the population census 1999 was used in the survey. Three-stage sampling was implemented to select participating households.
Detailed description of the sampling procedure is available in "Azerbaijan HBS: Methodology" (p.2-6) in external resources.
In 2001 the State Statistical Committee of the Republic of Azerbaijan (SSC) had to re-allocate existing interviewer staff to new sampling regions. However, existing employment legislation did not allow them to fire existing interviewers, or to re-hire them on more flexible contract basis. This led to compromises in the original sample implementation, with some interviewers having to work nearer to the place of residence. The compromises have led to some distortions in the final sample, with perhaps the most damaging being the under-representation of IDPs (internally displaced persons) in the 2001 sample. Throughout the year, the SSC has worked to re-allocate and re-employ interviewers in accordance with the new sample, and from 2002 there were no compromises.
Face-to-face [f2f]
The following survey instruments are used in Azerbaijan HBS:
1) Household Composition Checklist (to be filled for each household at the outset of the survey). If a household has agreed to participate in the survey, an interviewer must complete a household composition checklist.
2) Main Interview Questionnaire (also to be filled at the outset of the survey). It is completed during an interview with the head of the household at the outset of the survey. The questionnaire contains four chapters: - Housing conditions; - House-side plot; - Education and employment of household members; - Health conditions.
3) Daily Expenditure Diary (to be filled by the household during two weeks). The interviewer must explain to the household how to properly record expenses, namely: - Expenses are recorded on the date they are incurred. - Every expense is recorded in a separate line. - Records must be as accurate and detailed as possible.
4) Quarterly Expenditure Register (to be used throughout the entire quarter and as a supplement for the quarterly expenditure and income interview). The interviewer asks the surveyed households about their regular expenses and income on a quarterly basis. He/she poses questions about main (large) buys and regular expenses over the quarter. Since the family would have problems recollecting all expenses incurred over this period it is assumed that during the quarter the household will record expenses exceeding a certain amount in this document.
5) Expenditure and Income Questionnaire (to be filled quarterly in the course of the interview with the household members). The expenditure and income questionnaire includes the following chapters: - Clothing and shoe expenditure; - Household commodity expenditure; - Furniture, service and other large expenditure; - Housing and utility expenditure; - House-side land plot; - Health care expenditure; - Other expenses; - Individual questionnaire; - Control of completing the individual questionnaire; - Household's income.
While the questionnaires were piloted in the last quarter of 2000, there was not sufficient time to analyze the results of the pilot before launching the survey in January 2001. It was considered vital to begin data collection in January, in order to start the pattern of obtaining calendar year survey results. However, as the first results were entered and analyzed, it became clear that some of the questions were being interpreted in different ways by different interviewers. This was corrected through repeated training sessions and a revision of the questionnaires. The updated questionnaires were introduced in January 2002.
Interviewers under the old (before 2001) survey were asked to interview the same households indefinitely. In 2001, they were asked to contract new households each quarter. Given that households were paid only a nominal sum for their participation, interviewers were required to develop and use communication skills in gaining the trust of the households.
The first 2001 survey results showed that too much emphasis and control was being made on overall response rate, but response rates to individual questions were very low. Particularly damaging was the fact that interviewers were allowed to submit questionnaires with incomplete expenditure diaries, since household per capita expenditure was the main indicator used to evaluate welfare levels.
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 25% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN
Surveys related to the family budget are considered one of the most important surveys types carried out by the Department Of Statistics, since it provides data on household expenditure and income and their relationship with different indicators. Therefore, most of the countries undertake periodic surveys on household income and expenditures. The Department Of Statistics, since established, conducted a series of Expenditure and Income Surveys during the years 1966, 1980, 1986/1987, 1992, 1997, 2002/2003, 2006/2007, 2008/2009, 2010/2011 and because of continuous changes in spending patterns, income levels and prices, as well as in the population internal and external migration, it was necessary to update data for household income and expenditure over time. Hence, the need to implement the Household Expenditure and Income Survey for the year 2013 arises.
The survey was then conducted to achieve the following objectives: 1. Provide data on income and expenditure to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. 2. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index. 3. Provide the necessary data for the national accounts related to overall consumption and income of the household sector. 4. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty. 5. Identify consumer spending patterns prevailing in the society, and the impact of demographic, social and economic variables on those patterns. 6. Calculate the average annual income of the household and the individual, and identify the relationship between income and different socio-economic factors, such as profession and educational level of the head of the household and other indicators. 7. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.
The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the Kingdom. Where the Kingdom is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 25% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN
The Household Expenditure and Income survey sample, for the year 2013, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 10 households was selected from each cluster, in addition to another 5 households selected as a backup for the basic sample, using a systematic sampling technique. Those 5 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2010 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (8 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map. It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.
Face-to-face [f2f]
To reach the survey objectives, 3 forms have been developed. Those forms were finalized after being tested and reviewed by specialists taking into account making the data entry, and validation, process on the computer as simple as possible.
(1) General Form/Questionnaire This form includes: - Housing characteristics such as geographic location variables, household area, building material predominant for external walls, type of tenure, monthly rent or lease, main source of water, lighting, heating and fuel cooking, sanitation type and water cycle, the number of rooms in the dwelling, in addition to providing ownership status of some home appliances and car. - Characteristics of household members: This form focused on the social characteristics of the family members such as relation to the head of the family, gender, age and educational status and marital status. It also included economic characteristics such as economic activity, and the main occupation, employment status, and the labor sector. To the additions of questions about individual continued to stay with the family, in order to update the information at the end of each of the four rounds of the survey. - Income section which included three parts · Family ownership of assets · Productive activities for the family · Current income sources
(2) Expenditure on food commodities form/Questionnaire This form indicates expenditure data on 17 consumption groups. Each group includes a number of food commodities, with the exception of the latter group, which was confined to some of the non-food goods and services because of their frequent spending pattern on daily basis like food commodities. For the purposes of the efficient use of results, expenditure data of the latter group was moved with the non-food commodities expenditure. The form also includes estimated amounts of own-produced food items and those received as gifts or in an in-kind form, as well as servants living with the family spending on themselves from their own wages to buy food.
(3) Expenditure on non-food commodities form/Questionnaire This form indicates expenditure data on 11 groups of non-food items, and 5 sets of spending on services, in addition to a group of consumption expenditure. It also includes an estimate of self-consumption, and non-food gifts or other items in an in-kind form received or sent by the household, as well as servants living with the family spending on themselves from their own wages to buy non-food items.
----> Raw Data
The data collection phase was then followed by the data processing stage accomplished through the following procedures: 1- Organizing forms/questionnaires A compatible archive system, with the nature of the subsequent operations, was used to classify the forms according to different round throughout the year. This is to effectively enable extracting the forms when required for processing. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms are back to the archive system. 2- Data office checking This phase is achieved concurrently with the data collection phase in the field, where questionnaires completed in the fieldwork are immediately sent to data office checking phase. 3- Data coding A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were use, while for the rest of the questions, all coding were predefined
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
The Household Income, Expenditure and Consumption Survey (HIECS) is of great importance among other household surveys conducted by statistical agencies in various countries around the world. This survey provides a large amount of data to rely on in measuring the living standards of households and individuals, as well as establishing databases that serve in measuring poverty, designing social assistance programs, and providing necessary weights to compile consumer price indices, considered to be an important indicator to assess inflation.
The First Survey that covered all the country governorates was carried out in 1958/1959 followed by a long series of similar surveys. The current survey, HIECS 2017/2018, is the Thirteenth in this long series. Starting 2008/2009, Household Income, Expenditure and Consumption Surveys were conducted each two years instead of five years. this would enable better tracking of the rapid changes in the level of the living standards of the Egyptian households.
CAPMAS started in 2010/2011 to follow a panel sample of around 40% of the total household sample size. The current survey is the fourth one to follow a panel sample. This procedure will provide the necessary data to extract accurate indicators on the status of the society. The CAPMAS also is pleased to disseminate the results of this survey to policy makers, researchers and scholarly to help in policy making and conducting development related researches and studies
The survey main objectives are:
To identify expenditure levels and patterns of population as well as socio- economic and demographic differentials.
To measure average household and per-capita expenditure for various expenditure items along with socio-economic correlates.
To Measure the change in living standards and expenditure patterns and behavior for the individuals and households in the panel sample, previously surveyed in 2008/2009, for the first time during 12 months representing the survey period.
To define percentage distribution of expenditure for various items used in compiling consumer price indices which is considered important indicator for measuring inflation.
To estimate the quantities, values of commodities and services consumed by households during the survey period to determine the levels of consumption and estimate the current demand which is important to predict future demands.
To define average household and per-capita income from different sources.
To provide data necessary to measure standard of living for households and individuals. Poverty analysis and setting up a basis for social welfare assistance are highly dependent on the results of this survey.
To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas.
To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure.
To study the relationships between demographic, geographical, housing characteristics of households and their income.
To provide data necessary for national accounts especially in compiling inputs and outputs tables.
To identify consumers behavior changes among socio-economic groups in urban and rural areas.
To identify per capita food consumption and its main components of calories, proteins and fats according to its nutrition components and the levels of expenditure in both urban and rural areas.
To identify the value of expenditure for food according to its sources, either from household production or not, in addition to household expenditure for non-food commodities and services.
To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles ,…etc) in urban and rural areas that enables measuring household wealth index.
To identify the percentage distribution of income earners according to some background variables such as housing conditions, size of household and characteristics of head of household.
To provide a time series of the most important data related to dominant standard of living from economic and social perspective. This will enable conducting comparisons based on the results of these time series. In addition to, the possibility of performing geographical comparisons.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.
Covering a sample of urban and rural areas in all the governorates.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
The sample of HIECS 2017/2018 is a self-weighted two-stage stratified cluster sample. The main elements of the sampling design are described in the following.
1- Sample Size The sample size is around 26 thousand households. It was distributed between urban and rural with the percentages of 45% and 55%, respectively.
2- Cluster size The cluster size is 20 households in all governorates.
3- Sample allocation in different governorates 45% of the survey sample was allocated to urban areas (12020 households) and the other 55% was allocated to rural areas (13780 households). The sample was distributed on urban/rural areas in different governorates proportionally with the household size A sample size of a minimum of 1000 households was allocated to each governorate to ensure accuracy of poverty indicators. Therefore, the sample size was increased in Port-Said, Suez, Ismailiya, kafr el-Sheikh, Damietta, Bani Suef, Fayoum, Qena, Luxor and Aswan, by compensation from other governorates where the sample size exceeds a 1000 households. All Frontier governorates were considered as one governorate.
4- Core Sample The core sample is the master sample of any household sample required to be pulled for the purpose of studying the properties of individuals and families. It is a large sample and distributed on urban and rural areas of all governorates. It is a representative sample for the individual characteristics of the Egyptian society. This sample was implemented in January 2010 and its size reached more than 1 million household selected from 5024 enumeration areas distributed on all governorates (urban/rural) proportionally with the sample size (the enumeration area size is around 200 households). The core sample is the sampling frame from which the samples for the surveys conducted by CAPMAS are pulled, such as the Labor Force Surveys, Income, Expenditure And Consumption Survey, Household Urban Migration Survey, ...etc, in addition to other samples that may be required for outsources.
A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among external resources in Arabic.
Face-to-face [f2f]
Three different questionnaires have been designed as following:
1- Expenditure and Consumption Questionnaire. 2- Assisting questionnaire. 3- Income Questionnaire.
In designing the questionnaires of expenditure, consumption and income, we were taking into our consideration the following: - Using the recent concepts and definitions of International Labor Organization approved in the International Convention of Labor Statisticians held in Geneva, 2003. - Using the recent Classification of Individual Consumption According to Purpose (COICOP). - Using more than one approach of expenditure measurement to serve many purposes of the survey.
A brief description of each questionnaire is given next:
----> 1- Expenditure and Consumption Questionnaire This questionnaire comprises 14 tables in addition to identification and geographic data of household on the cover page. The questionnaire is divided into two main sections.
Section one: Household schedule and other information, it includes: - Demographic characteristics and basic data for all household individuals consisting of 25 questions for every person. - Members of household who are currently working abroad. - The household ration card. - The main outlets that provide food and beverage. - Domestic and foreign tourism. - The housing conditions including 16 questions. - Household ownership of means of transportation, communication and domestic appliances. - Date of purchase, status at purchase, purchase value and current imputed value of the household possessed appliances and means of transportation. - The Duration since the household was established - The main outlet
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Between 2018 and 2019 the American Community Survey retirement income question changed. These changes resulted in an increase in both the number of households reporting retirement income and higher aggregate retirement income at the national level. For more information see Changes to the Retirement Income Question ..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The road sector plays a critical role because 99% of goods produced in Senegal are transported by roads. Because the elected segments of RN 2 and RN 6 have a commercially and politically central geographical location and because of their poor initial state their rehabilitation should have a detectible positive effect on local populations (column 3, 4 and 6.) Implementers rehabilitate the road segments of RN2 and RN6 under the supervision of MCC and MCA (Activities). The byproduct of the activities performed is the rehabilitated roads: 120 km and 256 km of rehabilitated RN2 and RN6 road segments, respectively (Outputs). Note that unexpected delays in the implementation have occurred because of environment factors, such as extreme weather and civil unrest. These contingencies can prevent the timely rehabilitation of the roads. There may be other factors that affect the road rehabilitation project. For example, there could be cost overruns that reduce the length of roads that end up being rehabilitated (outputs), thus affecting fewer beneficiaries than planned (outcomes).
Some outcomes may be realized immediately upon completion of the project, while others may take longer to materialize. Once the road rehabilitation implementation is complete, it is expected that the time and cost required to travel to a certain destination via the rehabilitated roads will be reduced. Also, the targeted road segments will be improved in quality and are thus likely to be used more frequently. These outcomes are expected to be realized shortly after the completion of the roads (short-term outcomes).
The completion of the road rehabilitation is also expected to unlock economic and social opportunities for households and individuals using the road (medium/long-term outcomes). For example, the project may improve access to markets to buy and sell products. It may also be easier and cheaper to find inputs needed for production activities for both formal enterprises and household informal economic activities. Due to the reduced time and cost of travel on the rehabilitated roads, households may enjoy easier access to basic facilities such as schools and health centers. Furthermore, there may be more employment opportunities due to increased demand in markets accessible via the improved roads. Lastly, the value of land and assets along the rehabilitated roads is expected to rise as demand for the road use rises.
Research Question 1: Did the RRP reduce the travel time and costs to households/enterprises located near the rehabilitated roads?
Research Question 2: Did the RRP lead to increased work opportunities for employment and income among beneficiary households?
Research Question 3: Did the RRP lead to increased access to health and education services?
Research Question 4: Did the project affect business opportunities and enterprise revenues?
Research Question 5: What is the ex-post Economic Rate of Return (ERR) of the RRP?
Research Question 6: How are the benefits of the projects distributed among subgroups of the population such as gender, age and income?
Research Question 7: How do the long-term impacts of the road projects per dollar invested compare to other typical infrastructure investments?
Regional Coverage
Households and enterprises
Habitants and Enterprises nearby the Roads.
Sample survey data [ssd]
We use statistical power analysis to calculate the minimum sample size required to detect an effect of a given size. Identifying an appropriate sample size for our impact evaluation depends on various factors and assumptions, including a desired effect size, target power and significance level. For the desired effect size, we used information on the magnitude of benefits from the Beneficiary Analysis provided by MCC. The power of a statistical test is the probability of detecting a true effect when it truly exists. The significance level is the probability of falsely detecting an effect when it does not exist. We calculate the minimum sample sizes required to detect an effect of a given size for each of the combinations of the most commonly used power and significance levels. Using the present value of benefit stream as a share of annual income of about 10% and the per capita GNI of USD 820 in the ERR spreadsheet from MCC, we estimate that approximately of benefits are expected to be generated from the RRP per household for the first 5 years.
Using the least restrictive criteria for the power and test size (80% power and a 5% significance level), it was determined that we need at least 1,227 households in each of the treatment and comparison groups. Thus, the minimum total household sample size is 4,908 (=1,227*4). As mentioned, this is the minimum required sample size for the least restrictive assumption for power and test size. For more robust results, we would need larger sample sizes. However, given the trade-off between the statistical rigor and the budgetary constraints faced by MCA-S, we have selected the smallest sample size consistent with a rigorous impact evaluation.
Regarding the sample size requirement for the enterprise survey, in discussion with MCC and MCA-S, we concluded not to use the power analysis due to lack of information about the number of enterprises along the treatment and comparison roads. Instead, we relied on the input of MCA-S staffers who know about business conditions for enterprises along RN2 and RN6. We then proposed a survey sample of approximately 600 enterprises.
Baseline data have been collected using in-person interviews from households and enterprises located along the treatment and comparison areas. The baseline survey collected data on background characteristics and key outcomes of interest (income, use of the roads and various economic activities) for both household and enterprises. The survey instrument tocollect household data was structured in several sections that collected the following information: § Demographic characteristics of household members § Employment and revenues of household members § Household food and non-food consumption (whether a household has consumed certain types of food and the frequency of purchase) § Salary and non-agricultural income of household members § Household assets (e.g., type of home, access to electricity, etc.) § Household members' use of the road, frequency of use, time and distance traveled to various destinations such as local market, communal market, school, health infrastructure and workplace § Agricultural/Livestock production and commercialization: amount of production realized and sold by crop
A separate questionnaire was developed to gather information on enterprises. This data collection effort is essential to gain a full picture of the impact of the RRP. The survey collected detailed information on the type of enterprise activities, the quantity of goods produced and sold, the costs related to the commercialization of goods and the purchase of raw materials, the size of the enterprises in terms of employees and capital equipment, revenues and use of the road in the same areas in which the heads of households were interviewed. In particular, the survey instrument to collect enterprise data was structured in several sections that collected the following information: § Information on the entrepreneur § Characteristics of the enterprise: e.g., primary activity, workers employed, mobile equipment and machinery (tractors, etc.) § Production and commercialization: e.g., the amount of sales from products and services, destination of products and services, use of the road to deliver the products/services, distance traveled on the road § Difficulties encountered in the entrepreneurial activity, including whether the enterprise has difficulties obtaining credit, recruiting personnel and difficulties related to the access of the road.
This evaluation will investigate how adoption of drip irrigation technology, access to credit and conversion from traditional crop subsistence level farming to high value horticultural and fruit crops will impact household incomes of participating farmers distinct from non-participating farmer households. In order to fully measure the impact of these activities on farmer household income, MCC intends to conduct a post-compact evaluation which will compare the change in average household income prior to and following participation in the program. The fundamental research question to be answered is “Do the increased costs of investment in drip irrigation technology, access to credit and conversion from traditional crop subsistence level farming to high value horticultural and fruit crops increase annual agricultural production sufficient to raise participating farmer households out of rural poverty?
In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.
Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.
Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.