100+ datasets found
  1. h

    house-price

    • huggingface.co
    Updated May 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trang Dang (2024). house-price [Dataset]. https://huggingface.co/datasets/ttd22/house-price
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 15, 2024
    Authors
    Trang Dang
    Description

    ttd22/house-price dataset hosted on Hugging Face and contributed by the HF Datasets community

  2. F

    All-Transactions House Price Index for the United States

    • fred.stlouisfed.org
    json
    Updated Aug 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for the United States [Dataset]. https://fred.stlouisfed.org/series/USSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q2 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.

  3. T

    United States House Price Index YoY

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index YoY [Dataset]. https://tradingeconomics.com/united-states/house-price-index-yoy
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1992 - Jul 31, 2025
    Area covered
    United States
    Description

    House Price Index YoY in the United States decreased to 2.30 percent in July from 2.70 percent in June of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.

  4. Housing Prices Dataset - Philippines

    • kaggle.com
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jandrik Lana (2024). Housing Prices Dataset - Philippines [Dataset]. https://www.kaggle.com/datasets/linkanjarad/housing-prices-dataset-philippines
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 3, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jandrik Lana
    Area covered
    Philippines
    Description

    Dataset on Housing Prices in the Philippines, scraped from from Lamudi on May 2023.

  5. F

    Real Residential Property Prices for United States

    • fred.stlouisfed.org
    json
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for United States [Dataset]. https://fred.stlouisfed.org/series/QUSR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.

  6. F

    All-Transactions House Price Index for Texas

    • fred.stlouisfed.org
    json
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Texas [Dataset]. https://fred.stlouisfed.org/series/TXSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Texas
    Description

    Graph and download economic data for All-Transactions House Price Index for Texas (TXSTHPI) from Q1 1975 to Q2 2025 about appraisers, TX, HPI, housing, price index, indexes, price, and USA.

  7. Housing Prices Regression 🏘️

    • kaggle.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Den_Kuznetz (2024). Housing Prices Regression 🏘️ [Dataset]. https://www.kaggle.com/datasets/denkuznetz/housing-prices-regression
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Den_Kuznetz
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Task Description: Real Estate Price Prediction

    This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.

    The goal is to build a regression model that can predict the Price of a property based on the provided features.

    Dataset Columns:

    ID: A unique identifier for each property.

    Square_Feet: The area of the property in square meters.

    Num_Bedrooms: The number of bedrooms in the property.

    Num_Bathrooms: The number of bathrooms in the property.

    Num_Floors: The number of floors in the property.

    Year_Built: The year the property was built.

    Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).

    Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).

    Garage_Size: The size of the garage in square meters.

    Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).

    Distance_to_Center: The distance from the property to the city center in kilometers.

    Price: The target variable that represents the price of the property. This is the value we aim to predict.

    Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.

  8. Housing Price Dataset of Delhi(India)

    • kaggle.com
    Updated Nov 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yash Goel (2021). Housing Price Dataset of Delhi(India) [Dataset]. https://www.kaggle.com/datasets/goelyash/housing-price-dataset-of-delhiindia
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 23, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yash Goel
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Delhi, India
    Description

    Context

    So this data set is collected for completing a college project ,which is an android app for calculating the price of houses.

    Content

    This data is scraped from magic bricks website between june 2021 and july 2021 .

    Acknowledgements

    magicbricks.com

    Inspiration

    With the help of the data available one can make a regression model to predict house prices.

  9. F

    All-Transactions House Price Index for Fort Wayne, IN (MSA)

    • fred.stlouisfed.org
    json
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Fort Wayne, IN (MSA) [Dataset]. https://fred.stlouisfed.org/series/ATNHPIUS23060Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Fort Wayne
    Description

    Graph and download economic data for All-Transactions House Price Index for Fort Wayne, IN (MSA) (ATNHPIUS23060Q) from Q4 1977 to Q2 2025 about Fort Wayne, IN, appraisers, HPI, housing, price index, indexes, price, and USA.

  10. πŸ™οΈ Malaysian Condominium Prices Data

    • kaggle.com
    Updated Sep 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcus Chan (2023). πŸ™οΈ Malaysian Condominium Prices Data [Dataset]. https://www.kaggle.com/datasets/mcpenguin/raw-malaysian-housing-prices-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Marcus Chan
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Inspired by the quintessential House Prices Starter Competition and the popular Melbourne Housing Dataset, this dataset captures 4K+ condominium unit listings on the Malaysian housing website mudah.my.

    Like the above datasets, your job is to predict the house prices given certain parameters.

    The data was scraped directly from the website using this data collection notebook. I might adapt the code to include houses as well in the future, but scraping the data takes a while due to having to wait for the website to load and having to timeout to account for CloudFlare's protections.

    Note: This data is a lot less clean and organized than the data in the two datasets mentioned above. However, this is a good opportunity to practice data cleaning techniques, as this is something that is often overlooked on Kaggle. That being said, I made a starter notebook that goes through the data cleaning steps and outputs a fairly cleaned version of the dataset.

    Data Description

    • description: The full (unfiltered) description for the unit listing.
    • Ad List: The ID of the listing on the website.
    • Category: The category of the listing. It will most likely be Apartment / Condominium.
    • Facilities: The facilities that the apartment has, in a comma-separated list.
    • Building Name: The name of the building.
    • Developer: The developer for the building.
    • Tenure Type: The type of tenure for the building.
    • Address: The address of the building. You can refer to this link for a description of what Malaysian addresses look like.
    • Completion Year: The completion year of the building. If the building is still under construction, this is listed as -.
    • # of Floors: The number of floors in the building.
    • Total Units: The total number of units in the building.
    • Property Type: The type of property.
    • Bedroom: The number of bedrooms in the unit.
    • Bathroom: The number of bathrooms in the unit.
    • Parking Lot: The number of parking lots assigned to the unit, if any.
    • Floor Range: The floor range for the building.
    • Property Size: The size of the unit.
    • Land Title: The title given to the land. This link explains what land titles are.
    • Firm Type: The type of firm who posted the listing.
    • Firm Number: The ID of the firm who posted the listing.
    • REN Number: The REN number of the firm who posted the listing. Refer to this link for what REN numbers are.
    • price: The price of the unit. This is what you are trying to predict.
    • Nearby School/School: If there is a nearby school to the unit, which school it is.
    • Park: If there is a nearby park to the unit, which park it is.
    • Nearby Railway Station: If there is a nearby railway station to the unit, which railway station it is.
    • Bus Stop: If there is a nearby bus stop to the unit, which station it is.
    • Nearby Mall/Mall: If there is a nearby mall to the unit, which mall it is.
    • Highway: If there is a nearby highway to the unit, which highway it is.
  11. y

    US House Price Index

    • ycharts.com
    html
    Updated Sep 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Housing Finance Agency (2025). US House Price Index [Dataset]. https://ycharts.com/indicators/us_house_price_index
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    YCharts
    Authors
    Federal Housing Finance Agency
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 31, 1991 - Jul 31, 2025
    Area covered
    United States
    Variables measured
    US House Price Index
    Description

    View monthly updates and historical trends for US House Price Index. from United States. Source: Federal Housing Finance Agency. Track economic data with …

  12. F

    Residential Property Prices for Japan

    • fred.stlouisfed.org
    json
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Residential Property Prices for Japan [Dataset]. https://fred.stlouisfed.org/series/QJPN628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Residential Property Prices for Japan (QJPN628BIS) from Q1 1955 to Q1 2025 about Japan, residential, HPI, housing, price index, indexes, and price.

  13. UK House Price Index: monthly price statistics

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). UK House Price Index: monthly price statistics [Dataset]. https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/ukhousepriceindexmonthlypricestatistics
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Summary of UK House Price Index (HPI) price statistics covering England, Scotland, Wales and Northern Ireland. Full UK HPI data are available on GOV.UK.

  14. Sales price of existing single-family houses in the U.S. 2000-2024

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Sales price of existing single-family houses in the U.S. 2000-2024 [Dataset]. https://www.statista.com/statistics/184857/sales-price-of-existing-single-family-homes-in-the-us-since-2000/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. housing market has seen significant price growth since 2011, with the median sales price of existing single-family homes reaching a record high of ******* U.S. dollars in 2024. This represents a substantial increase of ******* over the past five years, highlighting the rapid appreciation of home values across the country. The trend of rising prices can also be observed in the new homes sold. Regional variations and housing shortage While the national median price provides a broad overview, regional differences in home prices are notable. The West remains the most expensive region, with prices twice higher than in the more affordable Midwest. This disparity persists despite efforts to increase housing supply. In 2024, approximately ******* building permits for single-family housing units were granted, showing a slight increase from previous years but still well below the 2005 peak of **** million permits. The ongoing housing shortage continues to drive prices upward across all regions. Market dynamics and future outlook The number of existing home sales has plummeted since 2020, reflecting the growing cost of homeownership. Factors such as high home prices, unfavorable economic conditions, and aggressive increases in mortgage rates have contributed to affordability challenges for many potential homebuyers. Despite these challenges, forecasts suggest a potential recovery in the housing market by 2025, though transaction volumes are expected to remain below long-term averages.

  15. Nominal house price index in select countries in the Americas 2010-2024, by...

    • statista.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Nominal house price index in select countries in the Americas 2010-2024, by quarter [Dataset]. https://www.statista.com/topics/5466/global-housing-market/
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In 2024, Chile was the country with the highest increase in house prices since 2010 among the countries under observation. In the fourth quarter of the year, the nominal house price index in Chile exceeded 366 index points. That suggests an increase of 266 percent since 2010, the baseline year when the index value was set to 100. It is important to note that the nominal index does not account for the effects of inflation, meaning that adjusted for inflation, price growth in real terms was slower.

  16. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  17. F

    All-Transactions House Price Index for Colorado

    • fred.stlouisfed.org
    json
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Colorado [Dataset]. https://fred.stlouisfed.org/series/COSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Colorado
    Description

    Graph and download economic data for All-Transactions House Price Index for Colorado (COSTHPI) from Q1 1975 to Q2 2025 about CO, appraisers, HPI, housing, price index, indexes, price, and USA.

  18. U.S. housing: Case Shiller Portland Home Price Index 2017-2024

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. housing: Case Shiller Portland Home Price Index 2017-2024 [Dataset]. https://www.statista.com/statistics/398476/case-shiller-portland-home-price-index/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2017 - Aug 2024
    Area covered
    United States
    Description

    The S&P Case Shiller Portland Home Price Index has increased steadily in recent years. The index measures changes in the prices of existing single-family homes. The index value was equal to 100 as of January 2000, so if the index value is equal to *** in a given month, for example, it means that the house prices have increased by ** percent since 2000. The value of the S&P Case Shiller Portland Home Price Index amounted to ***** in August 2024. That was higher the national average.

  19. t

    House Price Index | India | 2013 - 2025 | Data, Charts and Analysis

    • themirrority.com
    Updated Jan 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). House Price Index | India | 2013 - 2025 | Data, Charts and Analysis [Dataset]. https://www.themirrority.com/data/house_price_index
    Explore at:
    Dataset updated
    Jan 10, 2022
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2013 - Mar 31, 2025
    Area covered
    India
    Variables measured
    House Price Index
    Description

    India's residential house prices - quarterly and annual changes in house prices across cities, expert analysis and comparison with global peers.

  20. S

    Spain House Prices Growth

    • ceicdata.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Spain House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/spain/house-prices-growth
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    Spain
    Description

    Key information about House Prices Growth

    • Spain house prices grew 7.7% YoY in Feb 2025, following an increase of 6.6% YoY in the previous month.
    • YoY growth data is updated monthly, available from Jan 2002 to Feb 2025, with an average growth rate of 3.6%.
    • House price data reached an all-time high of 21.0% in Sep 2004 and a record low of -11.7% in Apr 2013.

    CEIC calculates House Prices Growth from monthly House Price Index. Tinsa provides House Price Index with base 2001=1000.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Trang Dang (2024). house-price [Dataset]. https://huggingface.co/datasets/ttd22/house-price

house-price

ttd22/house-price

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 15, 2024
Authors
Trang Dang
Description

ttd22/house-price dataset hosted on Hugging Face and contributed by the HF Datasets community

Search
Clear search
Close search
Google apps
Main menu