Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Median Family Income data was reported at 77,021.000 USD in Oct 2018. This records an increase from the previous number of 76,754.000 USD for Sep 2018. United States Housing Affordability Index: Median Family Income data is updated monthly, averaging 53,251.500 USD from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 77,021.000 USD in Oct 2018 and a record low of 33,287.000 USD in Jan 1989. United States Housing Affordability Index: Median Family Income data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Housing Affordability Data System (HADS) is a set of files derived from the 1985 and later national American Housing Survey (AHS) and the 2002 and later Metro AHS. This system categorizes housing units by affordability and households by income, with respect to the Adjusted Median Income, Fair Market Rent (FMR), and poverty income. It also includes housing cost burden for owner and renter households. These files have been the basis for the worst case needs tables since 2001. The data files are available for public use, since they were derived from AHS public use files and the published income limits and FMRs. We are providing these files give the community of housing analysts the opportunity to use a consistent set of affordability measures.This data set appears to not be upated after 2013
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Fixed data was reported at 146.900 NA in Oct 2018. This records a decrease from the previous number of 147.400 NA for Sep 2018. United States Housing Affordability Index: Fixed data is updated monthly, averaging 127.900 NA from Jan 1989 (Median) to Oct 2018, with 357 observations. The data reached an all-time high of 212.800 NA in Jan 2013 and a record low of 97.600 NA in May 1989. United States Housing Affordability Index: Fixed data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
The Housing Affordability Index value in the United States plummeted in 2022, surpassing the historical record of ***** index points in 2006. In 2024, the housing affordability index measured **** index points, making it the second-worst year for homebuyers since the start of the observation period. What does the Housing Affordability Index mean? The Housing Affordability Index uses data provided by the National Association of Realtors (NAR). It measures whether a family earning the national median income can afford the monthly mortgage payments on a median-priced existing single-family home. An index value of 100 means that a family has exactly enough income to qualify for a mortgage on a home. The higher the index value, the more affordable a house is to a family. Key factors that drive the real estate market Income, house prices, and mortgage rates are some of the most important factors influencing homebuyer sentiment. When incomes increase, consumer power also increases. The median household income in the United States declined in 2022, affecting affordability. Additionally, mortgage interest rates have soared, adding to the financial burden of homebuyers. The sales price of existing single-family homes in the U.S. has increased year-on-year since 2011 and reached ******* U.S. dollars in 2023.
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Affordability Index (Fixed) from Apr 2024 to Apr 2025 about fixed, housing, indexes, and USA.
In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.
https://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html
A commonly accepted threshold for affordable housing costs at the household level is 30% of a household's income. Accordingly, a household is considered cost burdened if it pays more than 30% of its income on housing. Households paying more than 50% are considered severely cost burdened. These thresholds apply to both homeowners and renters.
The Housing Affordability indicator only measures cost burden among the region's households, and not the supply of affordable housing. The directionality of cost burden trends can be impacted by changes in both income and housing supply. If lower income households are priced out of a county or the region, it would create a downward trend in cost burden, but would not reflect a positive trend for an inclusive housing market.
Comprehensive Housing Affordability Strategy (CHAS) data documenting the extent of housing problems and housing needs, particularly for low income households, at the State level. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Monthly Principal and Interest Payment data was reported at 1,092.000 USD in Oct 2018. This records an increase from the previous number of 1,085.000 USD for Sep 2018. United States Housing Affordability Index: Monthly Principal and Interest Payment data is updated monthly, averaging 783.000 USD from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 1,207.000 USD in Jul 2006 and a record low of 568.000 USD in Feb 1994. United States Housing Affordability Index: Monthly Principal and Interest Payment data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Mortgage Rate data was reported at 4.770 % in Sep 2018. This records a decrease from the previous number of 4.780 % for Aug 2018. United States Housing Affordability Index: Mortgage Rate data is updated monthly, averaging 6.470 % from Jan 1989 (Median) to Sep 2018, with 357 observations. The data reached an all-time high of 10.590 % in Jun 1989 and a record low of 3.430 % in Dec 2012. United States Housing Affordability Index: Mortgage Rate data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
This map uses a two-color thematic shading to emphasize where areas experience the least to the most affordable housing across the US. This web map is part of the How Affordable is the American Dream story map.
Esri’s Housing Affordability Index (HAI) is a powerful tool to analyze local real estate markets. Esri’s housing affordability index measures the financial ability of a typical household to purchase an existing home in an area. A HAI of 100 represents an area that on average has sufficient household income to qualify for a loan on a home valued at the median home price. An index greater than 100 suggests homes are easily afforded by the average area resident. A HAI less than 100 suggests that homes are less affordable. The housing affordability index is not applicable in areas with no households or in predominantly rental markets . Esri’s home value estimates cover owner-occupied homes only. For a full demographic analysis of US growth refer to Esri's Trending in 2017: The Selectivity of Growth.
The pop-up is configured to show the following 2017 demographics for each County and ZIP Code:
Total Households 2010-17 Annual Pop Change Median Age Percent Owner-Occupied Housing Units Median Household Income Median Home Value Housing Affordability Index Share of Income to Mortgage
In 2019, almost half of all renters in the United States were considered to be either moderately or severely cost-burdened, but there was variation among U.S. states. For instance, 54 percent of renters in Florida were cost-burdened, whereas 38.1 percent of North Carolina renters were considered cost-burdened. A household is considered to be housing cost burdened when the housing costs exceed 30 percent of the family income.
West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q1 2025 about sales, housing, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e18
Estimate from 2014-18 ACS
_m18
Margin of Error from 2014-18 ACS
_00_v18
Decennial 2000 in 2018 geography boundary
_00_18
Change, 2000-18
_e10_v18
Estimate from 2006-10 ACS in 2018 geography boundary
_m10_v18
Margin of Error from 2006-10 ACS in 2018 geography boundary
_e10_18
Change, 2010-18
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show comparison of housing ownership costs and rental costs to income by State of Georgia in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
Total area within the tract (in acres)
SqMi
Total area within the tract (in square miles)
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
HUM_SMOCAPI_e
# Housing units with a mortgage, costs as a percentage of income computed, 2017
HUM_SMOCAPI_m
# Housing units with a mortgage, costs as a percentage of income computed, 2017 (MOE)
MSMOCAPI30PctPlus_e
# Housing units with a mortgage, costs 30.0 percent of income or more, 2017
MSMOCAPI30PctPlus_m
# Housing units with a mortgage, costs 30.0 percent of income or more, 2017 (MOE)
pMSMOCAPI30PctPlus_e
% Housing units with a mortgage, costs 30.0 percent of income or more, 2017
pMSMOCAPI30PctPlus_m
% Housing units with a mortgage, costs 30.0 percent of income or more, 2017 (MOE)
HUNM_SMOCAPI_e
# Housing units without a mortgage, costs as a percentage of income computed, 2017
HUNM_SMOCAPI_m
# Housing units without a mortgage, costs as a percentage of income computed, 2017 (MOE)
NMSMOCAPI30PctPlus_e
# Housing units without a mortgage, costs 30.0 percent of income or more, 2017
NMSMOCAPI30PctPlus_m
# Housing units without a mortgage, costs 30.0 percent of income or more, 2017 (MOE)
pNMSMOCAPI30PctPlus_e
% Housing units without a mortgage, costs 30.0 percent of income or more, 2017
pNMSMOCAPI30PctPlus_m
% Housing units without a mortgage, costs 30.0 percent of income or more, 2017 (MOE)
OccGRAPI_e
# Occupied units for which rent as a percentage of income can be computed, 2017
OccGRAPI_m
# Occupied units for which rent as a percentage of income can be computed, 2017 (MOE)
GRAPI30PctPlus_e
# Gross rent 30.0 percent of income or greater, 2017
GRAPI30PctPlus_m
# Gross rent 30.0 percent of income or greater, 2017 (MOE)
pGRAPI30PctPlus_e
% Gross rent 30.0 percent of income or greater, 2017
pGRAPI30PctPlus_m
% Gross rent 30.0 percent of income or greater, 2017 (MOE)
HousingCost30PctPlus_e
# All occupied units for which costs exceed 30 percent of income, 2017
HousingCost30PctPlus_m
# All occupied units for which costs exceed 30 percent of income, 2017 (MOE)
PayingForHousing_e
# Total households paying for housing (rent or owner costs), 2017
PayingForHousing_m
# Total households paying for housing (rent or owner costs), 2017 (MOE)
pHousingCost30PctPlus_e
% Occupied units for which costs exceed 30 percent of income, 2017
pHousingCost30PctPlus_m
% Occupied units for which costs exceed 30 percent of income, 2017 (MOE)
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Payment as a % of Income data was reported at 17.000 % in Oct 2018. This stayed constant from the previous number of 17.000 % for Sep 2018. United States Housing Affordability Index: Payment as a % of Income data is updated monthly, averaging 19.200 % from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 24.700 % in Jul 2006 and a record low of 11.700 % in Jan 2013. United States Housing Affordability Index: Payment as a % of Income data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Housing Affordability Index: Median Family Income data was reported at 77,021.000 USD in Oct 2018. This records an increase from the previous number of 76,754.000 USD for Sep 2018. United States Housing Affordability Index: Median Family Income data is updated monthly, averaging 53,251.500 USD from Jan 1989 (Median) to Oct 2018, with 358 observations. The data reached an all-time high of 77,021.000 USD in Oct 2018 and a record low of 33,287.000 USD in Jan 1989. United States Housing Affordability Index: Median Family Income data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.