99 datasets found
  1. Housing costs as percentage of household income in New York City 2021

    • statista.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Housing costs as percentage of household income in New York City 2021 [Dataset]. https://www.statista.com/statistics/1235458/housing-costs-percentage-share-of-income-in-new-york-city-usa/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    New York
    Description

    Out of a total of *** million housing units in New York City in 2021, approximately ******* homes had housing costs between ** and ** percent of the household budget. New York City is notoriously known for its shortage of affordable housing: Overall, for a large percentage of New York City residents, housing costs exceeded ** percent.

  2. C

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  3. EU: share of housing costs in disposable income by income group and country...

    • statista.com
    • tokrwards.com
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). EU: share of housing costs in disposable income by income group and country 2023 [Dataset]. https://www.statista.com/statistics/1545843/housing-costs-share-disposable-income-income-group/
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    EU, European Union
    Description

    The rise in housing prices impacts households differently depending on their income. In Greece, households with incomes below the median spent over ** percent of their disposable income on housing, while those with incomes above the median spent around ** percent.

  4. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  5. Housing Cost as a Percentage of Income Map

    • data.wu.ac.at
    csv, json, xml
    Updated Aug 27, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau American Community Survey (2016). Housing Cost as a Percentage of Income Map [Dataset]. https://data.wu.ac.at/schema/performance_smcgov_org/aGY4bS03emFu
    Explore at:
    csv, xml, jsonAvailable download formats
    Dataset updated
    Aug 27, 2016
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    This dataset contains information about the percent of income households spend on housingin cities in San Mateo County. This data is for owner occupied housing with or without a mortgage. This data was extracted from the United States Census Bureau's American Community Survey 2014 5 year estimates.

  6. a

    ACS Housing Costs by Age

    • impactmap-smudallas.hub.arcgis.com
    Updated Feb 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SMU (2024). ACS Housing Costs by Age [Dataset]. https://impactmap-smudallas.hub.arcgis.com/datasets/acs-housing-costs-by-age/about
    Explore at:
    Dataset updated
    Feb 6, 2024
    Dataset authored and provided by
    SMU
    Area covered
    Description

    This layer shows housing costs as a percentage of household income by age. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Income is based on earnings in past 12 months of survey. This layer is symbolized to show the predominant housing type for householders where the householder is age 65+ and spending at least 30% of their income on housing.

  7. a

    ACS Owner Housing Costs

    • impactmap-smudallas.hub.arcgis.com
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SMU (2024). ACS Owner Housing Costs [Dataset]. https://impactmap-smudallas.hub.arcgis.com/maps/be6393fde76e4daba1554af2977daae4
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    SMU
    Area covered
    Description

    This layer shows housing costs as a percentage of household income. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Income is based on earnings in past 12 months of survey. This layer is symbolized to show the percent of owner households with mortgages whose monthly owner costs are 30.0 % or more of their household income.

  8. Housing Cost Burden

    • healthdata.gov
    • data.chhs.ca.gov
    • +4more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Housing Cost Burden [Dataset]. https://healthdata.gov/State/Housing-Cost-Burden/8ma4-c4rx
    Explore at:
    csv, tsv, xml, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description

    This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.

  9. Housing Costs As Percent Of Income

    • performance.smcgov.org
    • splitgraph.com
    csv, xlsx, xml
    Updated Oct 13, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, American Community Survey- 2012, 3 year estimates (2010-2012), DP04 (2014). Housing Costs As Percent Of Income [Dataset]. https://performance.smcgov.org/dataset/Housing-Costs-As-Percent-Of-Income/gq5w-4a9x
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 13, 2014
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, American Community Survey- 2012, 3 year estimates (2010-2012), DP04
    Description

    Housing Costs As Percent Of Income in San Mateo County, from ACS- DP04 2012

    ACS, 2012, 2010-2012, 3 year estimates, DP04

  10. Share of income spent on mortgage or rent in England 2011-2024, by tenure

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of income spent on mortgage or rent in England 2011-2024, by tenure [Dataset]. https://www.statista.com/statistics/755883/income-spent-on-mortgage-or-rent-england-by-tenure/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2023 - Mar 2024
    Area covered
    England
    Description

    When comparing the mortgage or rental costs incurred by owners with mortgage, private renters and social renters in England, private renters pay a considerably larger share of their income than the other two groups. While owner occupiers with mortgages paid approximately **** percent of their income on mortgage in 2024, private renters paid ** percent, or more than *********. In terms of average monthly costs, renting a three-bedroom house is more expensive than buying.

  11. 2024 American Community Survey: B25140F | Housing Costs as a Percentage of...

    • data.census.gov
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: B25140F | Housing Costs as a Percentage of Household Income in the Past 12 Months (Some Other Race Alone Householder) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B25140F?q=Albany+County,+New+York+Business+and+Economy&t=Race+and+Ethnicity
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Housing Costs as a Percentage of Household Income in the Past 12 Months (Some Other Race Alone Householder).Table ID.ACSDT1Y2024.B25140F.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the ...

  12. T

    Housing Cost Burden By Ownership and Income

    • open.piercecountywa.gov
    • internal.open.piercecountywa.gov
    Updated Apr 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2023). Housing Cost Burden By Ownership and Income [Dataset]. https://open.piercecountywa.gov/w/b2c8-cpv5/default?cur=umOTSSLKihR
    Explore at:
    xlsx, application/geo+json, xml, kml, csv, kmzAvailable download formats
    Dataset updated
    Apr 12, 2023
    Dataset authored and provided by
    United States Census Bureau
    Description

    Tenure by Housing Costs as a Percentage of Household Income in the Past 12 Months County and State values are from the American Community Survey (ACS) 1 Year Survey

  13. Share of housing costs in disposable household income, by type of household...

    • ec.europa.eu
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat, Share of housing costs in disposable household income, by type of household and income group [Dataset]. http://doi.org/10.2908/ILC_MDED01
    Explore at:
    application/vnd.sdmx.data+xml;version=3.0.0, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.genericdata+xml;version=2.1, json, application/vnd.sdmx.data+csv;version=2.0.0, tsvAvailable download formats
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2003 - 2024
    Area covered
    European Union (EU6-1958, EU15-1995, EU9-1973, EU28-2013, EU10-1981, EU27-2007, EU27-2020), EU12-1986, EU25-2004, Estonia, Luxembourg, Latvia, Iceland, France, Lithuania, Denmark, Belgium, Malta
    Description

    The European Union Statistics on Income and Living Conditions (EU-SILC) collects timely and comparable multidimensional microdata on income, poverty, social exclusion and living conditions.

    The EU-SILC collection is a key instrument for providing information required by the European Semester ([1]) and the European Pillar of Social Rights, and the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates.

    AROPE remains crucial to monitor European social policies, especially to monitor the EU 2030 target on poverty and social exclusion. For more information, please consult EU social indicators.

    The EU-SILC instrument provides two types of data:

    • Cross-sectional data pertaining to a given time or a certain time period with variables on income, poverty, social exclusion and other living conditions.
    • Longitudinal data pertaining to individual-level changes over time, observed periodically over four‐or more year rotation scheme (Annex III (2) of 2019/1700).

    EU-SILC collects:

    • annual variables,
    • three-yearly modules,
    • six-yearly modules,
    • ad-hoc new policy needs modules,
    • optional variables.

    The variables collected are grouped by topic and detailed topic and transmitted to Eurostat in four main files (D-File, H-File, R-File and P-file).

    The domain ‘Income and Living Conditions’ covers the following topics: persons at risk of poverty or social exclusion, income inequality, income distribution and monetary poverty, living conditions, material deprivation, and EU-SILC ad-hoc modules, which are structured into collections of indicators on specific topics.

    In 2023, in addition to annual data, in EU-SILC were collected: the three yearly module on labour market and housing, the six yearly module on intergenerational transmission of advantages and disadvantages, housing difficulties, and the ad hoc subject on households energy efficiency.

    Starting from 2021 onwards, the EU quality reports use the structure of the Single Integrated Metadata Structure (SIMS).

    ([1]) The European Semester is the European Union’s framework for the coordination and surveillance of economic and social policies.

  14. c

    Where are people affected by high rent costs?

    • hub.scag.ca.gov
    • hub.arcgis.com
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). Where are people affected by high rent costs? [Dataset]. https://hub.scag.ca.gov/maps/3a3207d9b7f0438e96270ffdef07a51d
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This map shows housing costs as a percentage of household income. Severe housing cost burden is described as when over 50% of income in a household is spent on housing costs. For renters it is over 50% of household income going towards gross rent (contract rent plus tenant-paid utilities). Miami, Florida accounts for the having the highest population of renters with severe housing burden costs.The map's topic is shown by tract and county centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Income is based on earnings in past 12 months of survey. Current Vintage: 2015-2019ACS Table(s): B25070, B25091Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 10, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis map can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  15. Housing cost income share for mortgage free homeowner Australia FY 2001-2020...

    • statista.com
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Housing cost income share for mortgage free homeowner Australia FY 2001-2020 [Dataset]. https://www.statista.com/statistics/1030574/australia-housing-costs-as-share-of-income-owner-without-mortgage/
    Explore at:
    Dataset updated
    Jan 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Australia
    Description

    Housing costs for Australian homeowners without a mortgage were around three percent of household income in 2020. The house price to income ratio has continued to increase since 2020 in the country.

  16. T

    Families Paying More Than 30% of Income in Housing Costs

    • internal.open.piercecountywa.gov
    • open.piercecountywa.gov
    Updated Aug 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census American Community Survey (2025). Families Paying More Than 30% of Income in Housing Costs [Dataset]. https://internal.open.piercecountywa.gov/Demographics/Families-Paying-More-Than-30-of-Income-in-Housing-/3qbi-wy3u
    Explore at:
    xml, csv, kml, application/geo+json, xlsx, kmzAvailable download formats
    Dataset updated
    Aug 15, 2025
    Dataset authored and provided by
    U.S. Census American Community Survey
    Description

    Tenure by Housing Costs as a Percentage of Household Income in the Past 12 Months County and State values are from the ACS 1 Year Survey (B25106_001E,B25106_006E,B25106_010E,B25106_014E,B25106_018E,B25106_022E,B25106_028E,B25106_032E,B25106_036E,B25106_040E,B25106_044E)

  17. Number of housing cost burdened households in the U.S. among renters 2023

    • statista.com
    • thefarmdosupply.com
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of housing cost burdened households in the U.S. among renters 2023 [Dataset]. https://www.statista.com/statistics/455762/housing-cost-burdneed-households-number-usa-among-renters/
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, there were approximately **** million housing cost burdened households among renters in the United States. A household is considered to be moderately burdened when the housing costs exceed 30 percent of the family income. Severely burdened households, on the other hand, spend more than 50 percent of their income on rent.

  18. Housing Costs - Percent of Income, 2019

    • performance.smcgov.org
    csv, xlsx, xml
    Updated May 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, American Community Survey, 2014, 5 year estimate, 2010-2014, DP04 (2021). Housing Costs - Percent of Income, 2019 [Dataset]. https://performance.smcgov.org/dataset/Housing-Costs-Percent-of-Income-2019/54ax-em9r
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    May 18, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, American Community Survey, 2014, 5 year estimate, 2010-2014, DP04
    Description

    Housing costs as percent of income from ACS, American Community Survey, 2019, 5 year estimate, 2014-2019, DP04. This data includes rental units and units with a mortgage. This data excludes units that do not have a mortgage.

  19. Share of households under housing stress in the U.S. 2019, by income level

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of households under housing stress in the U.S. 2019, by income level [Dataset]. https://www.statista.com/statistics/1011935/households-housing-stress-by-income-level-usa/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    United States
    Description

    This statistic shows the share of households who spent half or more of their income on housing in the United States in 2019, by income level. In 2019, **** percent of households who earned between 10,000 and ****** U.S. dollars annually spent fifty percent or more of their income on housing costs, whereas only *** percent of households with annual incomes between ****** and 100,000 U.S. dollars did the same.

  20. Housing cost income share for mortgage homeowner Australia FY 2001-2020

    • statista.com
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Housing cost income share for mortgage homeowner Australia FY 2001-2020 [Dataset]. https://www.statista.com/statistics/1030579/australia-housing-costs-as-share-of-income-owner-with-mortgage/
    Explore at:
    Dataset updated
    Jan 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Australia
    Description

    Housing costs for Australian homeowners with a mortgage were around 15.5 percent of household income in 2020. The house price to income ratio has been increasing in the country.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Housing costs as percentage of household income in New York City 2021 [Dataset]. https://www.statista.com/statistics/1235458/housing-costs-percentage-share-of-income-in-new-york-city-usa/
Organization logo

Housing costs as percentage of household income in New York City 2021

Explore at:
Dataset updated
Jul 7, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2021
Area covered
New York
Description

Out of a total of *** million housing units in New York City in 2021, approximately ******* homes had housing costs between ** and ** percent of the household budget. New York City is notoriously known for its shortage of affordable housing: Overall, for a large percentage of New York City residents, housing costs exceeded ** percent.

Search
Clear search
Close search
Google apps
Main menu