Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterThis dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.
- BROKERTITLE: Title of the broker
- TYPE: Type of the house
- PRICE: Price of the house
- BEDS: Number of bedrooms
- BATH: Number of bathrooms
- PROPERTYSQFT: Square footage of the property
- ADDRESS: Full address of the house
- STATE: State of the house
- MAIN_ADDRESS: Main address information
- ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
- LOCALITY: Locality information
- SUBLOCALITY: Sublocality information
- STREET_NAME: Street name
- LONG_NAME: Long name
- FORMATTED_ADDRESS: Formatted address
- LATITUDE: Latitude coordinate of the house
- LONGITUDE: Longitude coordinate of the house
- Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
- Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
- Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
- Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
- Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.
If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you
Facebook
TwitterIn 2021, Allegheny County Economic Development (ACED), in partnership with Urban Redevelopment Authority of Pittsburgh(URA), completed the a Market Value Analysis (MVA) for Allegheny County. This analysis services as both an update to previous MVA’s commissioned separately by ACED and the URA and combines the MVA for the whole of Allegheny County (inclusive of the City of Pittsburgh). The MVA is a unique tool for characterizing markets because it creates an internally referenced index of a municipality’s residential real estate market. It identifies areas that are the highest demand markets as well as areas of greatest distress, and the various markets types between. The MVA offers insight into the variation in market strength and weakness within and between traditional community boundaries because it uses Census block groups as the unit of analysis. Where market types abut each other on the map becomes instructive about the potential direction of market change, and ultimately, the appropriateness of types of investment or intervention strategies. This MVA utilized data that helps to define the local real estate market. The data used covers the 2017-2019 period, and data used in the analysis includes: Residential Real Estate Sales Mortgage Foreclosures Residential Vacancy Parcel Year Built Parcel Condition Building Violations Owner Occupancy Subsidized Housing Units The MVA uses a statistical technique known as cluster analysis, forming groups of areas (i.e., block groups) that are similar along the MVA descriptors, noted above. The goal is to form groups within which there is a similarity of characteristics within each group, but each group itself different from the others. Using this technique, the MVA condenses vast amounts of data for the universe of all properties to a manageable, meaningful typology of market types that can inform area-appropriate programs and decisions regarding the allocation of resources. Please refer to the presentation and executive summary for more information about the data, methodology, and findings.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This USA Housing Market Dataset (Synthetic) contains 300 rows and 10 columns of real estate-related data designed for housing price prediction, trend analysis, and investment insights. It includes key property details such as price, number of bedrooms and bathrooms, square footage, year built, garage spaces, lot size, zip code, crime rate, and school ratings.
This dataset is ideal for: ✅ Machine Learning Models for predicting housing prices ✅ Market Research & Investment Analysis ✅ Exploring Property Trends in the USA ✅ Educational Purposes for Data Science and Analytics
This dataset provides a realistic yet synthetic view of the real estate market, making it useful for data-driven decision-making in the housing industry.
Let me know if you need any modifications!
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.
The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.
Key Features:
Facebook
TwitterIn late 2016, the URA, in conjunction with Reinvestment Fund, completed the 2016 Market Value Analysis (MVA) for the City of Pittsburgh. The Market Value Analysis (MVA) offers an approach for community revitalization; it recommends applying interventions not only to where there is a need for development but also in places where public investment can stimulate private market activity and capitalize on larger public investment activities. The MVA is a unique tool for characterizing markets because it creates an internally referenced index of a municipality’s residential real estate market. It identifies areas that are the highest demand markets as well as areas of greatest distress, and the various markets types between. The MVA offers insight into the variation in market strength and weakness within and between traditional neighborhood boundaries because it uses Census block groups as the unit of analysis. Where market types abut each other on the map becomes instructive about the potential direction of market change, and ultimately, the appropriateness of types of investment or intervention strategies. Pittsburgh’s 2016 MVA utilized data that helps to define the local real estate market between July, 2013 and June, 2016: • Median Sales Price • Variance of Sales Price • Percent Households Owner Occupied • Density of Residential Housing Units • Percent Rental with Subsidy • Foreclosures as a Percent of Sales • Permits as a Percent of Housing Units • Percent of Housing Units Built Before 1940 • Percent of Properties with Assessed Condition “Poor” or worse • Vacant Housing Units as a Percentage of Habitable Units The MVA uses a statistical technique known as cluster analysis, forming groups of areas (i.e., block groups) that are similar along the MVA descriptors, noted above. The goal is to form groups within which there is a similarity of characteristics within each group, but each group itself different from the others. Using this technique, the MVA condenses vast amounts of data for the universe of all properties to a manageable, meaningful typology of market types that can inform area-appropriate programs and decisions regarding the allocation of resources. During the research process, staff from the URA and Reinvestment Fund spent an extensive amount of effort ensuring the data and analysis was accurate. In addition to testing the data, staff physically examined different areas to verify the data sets being used were appropriate indicators and the resulting MVA categories accurately reflect the market.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Explore the Redfin USA Properties Dataset, available in CSV format. This extensive dataset provides valuable insights into the U.S. real estate market, including detailed property listings, prices, property types, and more across various states and cities. Perfect for those looking to conduct in-depth market analysis, real estate investment research, or financial forecasting.
Key Features:
Who Can Benefit From This Dataset:
Download the Redfin USA Properties Dataset to access essential information on the U.S. housing market, ideal for professionals in real estate, finance, and data analytics. Unlock key insights to make informed decisions in a dynamic market environment.
Looking for deeper insights or a custom data pull from Redfin?
Send a request with just one click and explore detailed property listings, price trends, and housing data.
🔗 Request Redfin Real Estate Data
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Residential Real Estate Market Size 2025-2029
The residential real estate market size is valued to increase USD 485.2 billion, at a CAGR of 4.5% from 2024 to 2029. Growing residential sector globally will drive the residential real estate market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 55% growth during the forecast period.
By Mode Of Booking - Sales segment was valued at USD 926.50 billion in 2023
By Type - Apartments and condominiums segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 41.01 billion
Market Future Opportunities: USD 485.20 billion
CAGR : 4.5%
APAC: Largest market in 2023
Market Summary
The market is a dynamic and ever-evolving sector that continues to shape the global economy. With increasing marketing initiatives and the growing residential sector globally, the market presents significant opportunities for growth. However, regulatory uncertainty looms large, posing challenges for stakeholders. According to recent reports, technology adoption in residential real estate has surged, with virtual tours and digital listings becoming increasingly popular. In fact, over 40% of homebuyers in the US prefer virtual property viewings. Core technologies such as artificial intelligence and blockchain are revolutionizing the industry, offering enhanced customer experiences and streamlined processes.
Despite these advancements, regulatory compliance remains a major concern, with varying regulations across regions adding complexity to market operations. The market is a complex and intriguing space, with ongoing activities and evolving patterns shaping its future trajectory.
What will be the Size of the Residential Real Estate Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Residential Real Estate Market Segmented and what are the key trends of market segmentation?
The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Mode Of Booking
Sales
Rental or lease
Type
Apartments and condominiums
Landed houses and villas
Location
Urban
Suburban
Rural
End-user
Mid-range housing
Affordable housing
Luxury housing
Geography
North America
US
Canada
Mexico
Europe
France
Germany
UK
APAC
Australia
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Mode Of Booking Insights
The sales segment is estimated to witness significant growth during the forecast period.
Request Free Sample
The Sales segment was valued at USD 926.50 billion in 2019 and showed a gradual increase during the forecast period.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 55% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How Residential Real Estate Market Demand is Rising in APAC Request Free Sample
The market in the Asia Pacific (APAC) region holds a significant share and is projected to lead the global market growth. Factors fueling this expansion include the region's rapid urbanization and increasing consumer spending power. Notably, residential and commercial projects in countries like India and China are experiencing robust development. The residential real estate sector in China plays a pivotal role in the economy and serves as a major growth driver for the market.
With these trends continuing, the APAC the market is poised for continued expansion during the forecast period.
Market Dynamics
Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
In the Residential Real Estate Market, understanding the impact property tax rates home values and effect interest rates mortgage affordability is essential for buyers and investors. Key factors affecting home price appreciation and factors influencing housing affordability shape market trends, while the importance property due diligence process and requirements environmental site assessment ensure informed decisions. Investors benefit from methods calculating rental property roi, process home equity loan application, and benefits real estate portfolio diversification. Tools like property management software efficiency and techniques effective property marketing help tackle challenges managing rental properties. Additionally, strategies successf
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The North America Prefabricated Housing Market Report is Segmented by Material Type (Concrete, Glass, Metal, Timber, Other Materials), by Type (Single Family, Multi Family), by Product Type (Modular Homes, Panelized & Componentized Systems, Manufactured Homes, Other Prefab Types), and by Country (United States, Canada, Mexico). The Market Forecasts are Provided in Terms of Value (USD).
Facebook
TwitterIn 2017, the County Department of Economic Development, in conjunction with Reinvestment Fund, completed the 2016 Market Value Analysis (MVA) for Allegheny County. A similar MVA was completed with the Pittsburgh Urban Redevelopment Authority in 2016. The Market Value Analysis (MVA) offers an approach for community revitalization; it recommends applying interventions not only to where there is a need for development but also in places where public investment can stimulate private market activity and capitalize on larger public investment activities. The MVA is a unique tool for characterizing markets because it creates an internally referenced index of a municipality’s residential real estate market. It identifies areas that are the highest demand markets as well as areas of greatest distress, and the various markets types between. The MVA offers insight into the variation in market strength and weakness within and between traditional community boundaries because it uses Census block groups as the unit of analysis. Where market types abut each other on the map becomes instructive about the potential direction of market change, and ultimately, the appropriateness of types of investment or intervention strategies. The 2016 Allegheny County MVA does not include the City of Pittsburgh, which was characterized at the same time in the fourth update of the City of Pittsburgh’s MVA. All calculations herein therefore do not include the City of Pittsburgh. While the methodology between the City and County MVA's are very similar, the classification of communities will differ, and so the data between the two should not be used interchangeably. Allegheny County's MVA utilized data that helps to define the local real estate market. Most data used covers the 2013-2016 period, and data used in the analysis includes: •Residential Real Estate Sales; • Mortgage Foreclosures; • Residential Vacancy; • Parcel Year Built; • Parcel Condition; • Owner Occupancy; and • Subsidized Housing Units. The MVA uses a statistical technique known as cluster analysis, forming groups of areas (i.e., block groups) that are similar along the MVA descriptors, noted above. The goal is to form groups within which there is a similarity of characteristics within each group, but each group itself different from the others. Using this technique, the MVA condenses vast amounts of data for the universe of all properties to a manageable, meaningful typology of market types that can inform area-appropriate programs and decisions regarding the allocation of resources. During the research process, staff from the County and Reinvestment Fund spent an extensive amount of effort ensuring the data and analysis was accurate. In addition to testing the data, staff physically examined different areas to verify the data sets being used were appropriate indicators and the resulting MVA categories accurately reflect the market. Please refer to the report (included here as a pdf) for more information about the data, methodology, and findings.
Facebook
TwitterAfter a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This comprehensive house price dataset encompasses over 100,000 rows of data, providing an extensive overview of the global real estate market. It includes critical variables such as property prices, location details, property types, square footage, number of bedrooms, and bathrooms, and more.
The dataset is designed for in-depth analysis and modeling, making it suitable for researchers, data analysts, and real estate professionals. Users can leverage this data to identify trends, perform market analysis, develop predictive models, and gain insights into the factors influencing housing prices across various regions.
With its rich dataset, users can explore correlations between property features and pricing, assess market dynamics over time, and make informed decisions based on empirical evidence.
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The United States Residential Real Estate Market is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Price Band (Affordable, Mid-Market and Luxury), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (Northeast, Midwest, Southeast, West and Southwest). The Market Forecasts are Provided in Terms of Value (USD)
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming global residential real estate market! Our in-depth analysis reveals a $11.14B market in 2025, projected to grow at a 6.07% CAGR through 2033. Learn about key drivers, trends, regional insights, and leading companies shaping this dynamic industry. Get the data-driven insights you need to succeed. Recent developments include: December 2023: The Ashwin Sheth group is planning to expand its residential and commercial portfolio in the MMR (Mumbai Metropolitan Area) region, India., November 2023: Tata Realty and Infrastructure, a wholly-owned subsidiary of Tata Sons, plans to grow its business with more than 50 projects in major cities in India, Sri Lanka and the Maldives. The projects have a development potential of more than 51 million square feet.. Key drivers for this market are: Rapid urbanization, Government initiatives. Potential restraints include: High property prices, Regulatory challenges. Notable trends are: Increased urbanization and homeownership by elderly.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Real Estate Market Size 2025-2029
The real estate market size is valued to increase USD 1258.6 billion, at a CAGR of 5.6% from 2024 to 2029. Growing aggregate private investment will drive the real estate market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 64% growth during the forecast period.
By Type - Residential segment was valued at USD 1440.30 billion in 2023
By Business Segment - Rental segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 48.03 billion
Market Future Opportunities: USD 1258.60 billion
CAGR from 2024 to 2029 : 5.6%
Market Summary
In the dynamic realm of global real estate, private investment continues to surge, reaching an impressive USD 2.6 trillion in 2020. This significant influx of capital underscores the sector's enduring appeal to investors, driven by factors such as stable returns, inflation hedging, and the ongoing demand for shelter and commercial real estate space. Simultaneously, marketing initiatives have gained momentum, with digital platforms and virtual tours becoming increasingly popular.
However, regulatory uncertainty looms, posing challenges for market participants. Amidst this complex landscape, real estate remains a vital component of the global economy, continually evolving to meet the shifting needs of businesses and individuals alike.
What will be the Size of the Real Estate Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Real Estate Market Segmented ?
The real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Residential
Commercial
Industrial
Business Segment
Rental
Sales
Manufacturing Type
New construction
Renovation and redevelopment
Land development
Geography
North America
US
Canada
Europe
Germany
UK
APAC
Australia
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Type Insights
The residential segment is estimated to witness significant growth during the forecast period.
Amidst the dynamic real estate landscape, the residential sector encompasses the buying and selling of various dwelling types, including single-family homes, apartments, townhouses, and more. This segment experiences continuous growth, fueled by increasing millennial homeownership rates and urbanization trends. Notably, the APAC region, specifically China, dominates the market share, driven by escalating homeownership numbers. Concurrently, the Indian real estate sector thrives due to the demand for affordable housing, with initiatives like Pradhan Mantri Awas Yojana (PMAY) spurring the development of affordable housing projects. In this evolving market, various aspects such as environmental impact studies, capital appreciation potential, title insurance coverage, building lifecycle costs, mortgage interest rates, and structural engineering analysis play crucial roles.
Request Free Sample
The Residential segment was valued at USD 1440.30 billion in 2019 and showed a gradual increase during the forecast period.
Property tax appeals, property insurance premiums, property tax assessments, property marketing strategies, building material pricing, property management software, land surveying techniques, zoning regulations compliance, architectural design features, building code compliance, multifamily property management, rental yield calculations, construction cost estimation, energy efficiency ratings, green building certifications, tenant screening processes, investment property returns, property development plans, geotechnical site investigations, sustainable building practices, due diligence procedures, HVAC system efficiency, property renovation costs, market value appraisals, building permit acquisition, and property valuation models significantly impact the sector's progression. As of 2021, the market is projected to reach a value of USD 33.3 trillion, underscoring its substantial influence on the global economy.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 64% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
See How Real Estate Market Demand is Rising in APAC Request Free Sample
The APAC region held the largest share of the market in 2024, driven by factors such as rapid urbanization and increasing spending capacity. This trend is expected to continue during the forecast period. The overall health of the economy signi
Facebook
TwitterIn 2025, India was the country with the highest increase in house prices since 2010 among the Asia-Pacific (APAC) countries under observation. In the second quarter of the year, the nominal house price index in India reached over 359 index points. This suggests an increase of 259 percent since 2010, the baseline year when the index value was set to 100. It is important to note that the nominal index does not account for the effects of inflation, meaning when adjusted for inflation, price growth in real terms was slower.
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The China Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums and Villas & Landed Houses), Price Band (Affordable, Mid-Market and Luxury), Mode of Sale (Primary and Secondary), Business Model (Sales and Rental) and Key Cities (Shenzhen, Beijing, Shanghai, Hangzhou, Guangzhou, and Other Key Cities). The Market Forecasts are Provided in Terms of Value (USD).
Facebook
Twitterhttps://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
Affordable Housing Market Analysis The global affordable housing market is projected to reach $1,983.52 billion by 2033, exhibiting a CAGR of 4.71% from 2025 to 2033. The rising population, urbanization, affordability crisis, and supportive government policies are the primary drivers fueling market growth. The increasing demand for affordable single-family homes, multi-family units, and townhouses, coupled with the adoption of innovative construction methods like prefabrication, 3D printing, and sustainable construction, are key trends shaping the market. The market faces restraints such as escalating land and construction costs, regulatory challenges, and the shortage of skilled labor. Nevertheless, the emergence of crowdfunding platforms and non-profit organizations providing financial assistance, as well as government subsidies and tax incentives, are expected to mitigate these constraints. The market is segmented based on housing type, funding source, construction method, and target demographics. D.R. Horton, Taylor Morrison, PulteGroup, Zillow, Hovnanian Enterprises, and Lennar Corporation are notable companies in the global affordable housing market, with operations in key regions like North America, Europe, and Asia Pacific. Recent developments include: Recent developments in the Affordable Housing Market have highlighted the urgent need for innovative housing solutions as governments and organizations strive to address the growing housing crisis exacerbated by economic challenges and population growth. Various nations are prioritizing policies that encourage public-private partnerships to stimulate investment in affordable housing initiatives. Additionally, the integration of sustainable building practices and smart technologies is gaining traction as stakeholders aim to improve energy efficiency while reducing construction costs. Recent collaborations among international entities and local governments focus on leveraging funding for housing projects, particularly in urban areas where demand is surging. Moreover, rising material costs and labor shortages are prompting stakeholders to explore alternative building materials and methods, including modular construction and 3D printing, to streamline processes. These trends underscore a collective commitment to creating equitable housing opportunities while navigating the complexities of market dynamics, aiming for significant progress by 2032. Overall, this evolving landscape reflects a concerted effort to promote affordability, sustainability, and accessibility in housing worldwide.. Key drivers for this market are: Green building technologies adoption Public-private partnerships expansion Innovative financing solutions development Urban regeneration projects implementation Digital platforms for housing access. Potential restraints include: rising urbanization, government initiatives; increasing housing demand; socioeconomic disparities; affordable financing options.
Facebook
TwitterThis project combines data extraction, predictive modeling, and geospatial mapping to analyze housing trends in Mercer County, New Jersey. It consists of three core components: Census Data Extraction: Gathers U.S. Census data (2012–2022) on median house value, household income, and racial demographics for all census tracts in the county. It accounts for changes in census tract boundaries between 2010 and 2020 by approximating values for newly defined tracts. House Value Prediction: Uses an LSTM model with k-fold cross-validation to forecast median house values through 2025. Multiple feature combinations and sequence lengths are tested to optimize prediction accuracy, with the final model selected based on MSE and MAE scores. Data Mapping: Visualizes historical and predicted housing data using GeoJSON files from the TIGERWeb API. It generates interactive maps showing raw values, changes over time, and percent differences, with customization options to handle outliers and improve interpretability. This modular workflow can be adapted to other regions by changing the input FIPS codes and feature selections.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |