100+ datasets found
  1. T

    United States Nahb Housing Market Index

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Nahb Housing Market Index [Dataset]. https://tradingeconomics.com/united-states/nahb-housing-market-index
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1985 - Jun 30, 2025
    Area covered
    United States
    Description

    Nahb Housing Market Index in the United States decreased to 32 points in June from 34 points in May of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. R

    Residential Real Estate Market in the United States Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Residential Real Estate Market in the United States Report [Dataset]. https://www.datainsightsmarket.com/reports/residential-real-estate-market-in-the-united-states-17275
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global, United States
    Variables measured
    Market Size
    Description

    The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.

  3. T

    United States Existing Home Sales Prices

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Existing Home Sales Prices [Dataset]. https://tradingeconomics.com/united-states/single-family-home-prices
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - May 31, 2025
    Area covered
    United States
    Description

    Single Family Home Prices in the United States increased to 422800 USD in May from 414000 USD in April of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. F

    Housing Inventory: Median Days on Market in the United States

    • fred.stlouisfed.org
    json
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Inventory: Median Days on Market in the United States [Dataset]. https://fred.stlouisfed.org/series/MEDDAYONMARUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Housing Inventory: Median Days on Market in the United States (MEDDAYONMARUS) from Jul 2016 to May 2025 about median and USA.

  5. T

    China Newly Built House Prices YoY Change

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Newly Built House Prices YoY Change [Dataset]. https://tradingeconomics.com/china/housing-index
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2011 - May 31, 2025
    Area covered
    China
    Description

    Housing Index in China decreased by 3.50 percent in May from -4 percent in April of 2025. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  6. k

    Interest Rates, High Prices, and Inventory Shortage to Slow Down Housing...

    • kappasignal.com
    Updated May 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Interest Rates, High Prices, and Inventory Shortage to Slow Down Housing Market (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/interest-rates-high-prices-and.html
    Explore at:
    Dataset updated
    May 27, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Interest Rates, High Prices, and Inventory Shortage to Slow Down Housing Market

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. M

    U.S. Housing - Days on Market (2016-2025)

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). U.S. Housing - Days on Market (2016-2025) [Dataset]. https://www.macrotrends.net/3210/us-housing-days-on-market
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2016 - 2025
    Area covered
    United States
    Description

    The median number of days property listings spend on the market in a given geography during the specified month (calculated from list date to closing, pending, or off-market date depending on data availability).

    With the release of its September 2022 housing trends report, Realtor.com® incorporated a new and improved methodology for capturing and reporting housing inventory trends and metrics. The new methodology updates and improves the calculation of time on market and improves handling of duplicate listings. Most areas across the country will see minor changes with a smaller handful of areas seeing larger updates. As a result of these changes, the data released since October 2022 will not be directly comparable with previous data releases (files downloaded before October 2022) and Realtor.com® economics blog posts. However, future data releases, including historical data, will consistently apply the new methodology. More details are available at the source's Real Estate Data Library (https://www.realtor.com/research/data/).

    With the release of its November 2021 housing trends report, Realtor.com® incorporated a new and improved methodology for capturing and reporting housing inventory trends and metrics. The new methodology uses the latest and most accurate data mapping of listing statuses to yield a cleaner and more consistent measurement of active listings at both the national and local level. The methodology has also been adjusted to better account for missing data in some fields including square footage. Most areas across the country will see minor changes with a smaller handful of areas seeing larger updates. As a result of these changes, the data released since December 2021 will not be directly comparable with previous data releases (files downloaded before December 2021) and Realtor.com® economics blog posts. However, future data releases, including historical data, will consistently apply the new methodology. More details are available at the source's Real Estate Data Library (https://www.realtor.com/research/data/).

  8. k

    Understanding the Dynamics and Implications of a Housing Market Recession...

    • kappasignal.com
    Updated May 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Understanding the Dynamics and Implications of a Housing Market Recession (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/understanding-dynamics-and-implications.html
    Explore at:
    Dataset updated
    May 25, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Understanding the Dynamics and Implications of a Housing Market Recession

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. T

    United States Housing Starts

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Housing Starts [Dataset]. https://tradingeconomics.com/united-states/housing-starts
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - May 31, 2025
    Area covered
    United States
    Description

    Housing Starts in the United States decreased to 1256 Thousand units in May from 1392 Thousand units in April of 2025. This dataset provides the latest reported value for - United States Housing Starts - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  10. M

    AI in Real Estate Market to Reach USD 41.5 Billion By 2033

    • scoop.market.us
    Updated Jul 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Scoop (2024). AI in Real Estate Market to Reach USD 41.5 Billion By 2033 [Dataset]. https://scoop.market.us/ai-in-real-estate-market-news/
    Explore at:
    Dataset updated
    Jul 3, 2024
    Dataset authored and provided by
    Market.us Scoop
    License

    https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    The global AI in real estate market is experiencing remarkable growth, with projections indicating a substantial increase in value. By 2033, the market is anticipated to reach a staggering USD 41.5 billion, reflecting a notable compound annual growth rate (CAGR) of 30.5% during the forecast period from 2024 to 2033. This growth trajectory underscores the transformative impact of artificial intelligence (AI) on the real estate sector, revolutionizing various aspects of operations and decision-making processes.

    The integration of Artificial Intelligence (AI) in real estate is transforming how the industry operates, from property management to sales. AI technologies enable more efficient data processing and interpretation, facilitating better decision-making. Key applications include automated valuation models, predictive analytics for market trends, and chatbots for customer service. This innovation leads to improved user experiences and operational efficiencies.

    The AI in real estate market is experiencing significant growth. This expansion can be attributed to the increasing demand for smarter and more efficient real estate solutions, which AI provides. Real estate companies are investing in AI to enhance property search engines, implement smart home technologies, and improve transaction processes. These advancements are attracting both investors and companies looking to capitalize on the enhanced capabilities of AI to streamline operations and increase profitability.

    https://market.us/wp-content/uploads/2024/05/AI-in-Real-Estate-Market-1024x595.jpg" alt="AI in Real Estate Market" class="wp-image-120483">

    Despite challenges such as data privacy concerns and the integration of AI with traditional systems, the momentum for AI adoption in real estate remains strong. AI has the potential to create significant value for the industry, ranging from cost reduction to operational improvement. According to surveys, AI could generate substantial value ranging from $110 billion to $180 billion and beyond, highlighting its transformative potential.

  11. k

    OpenDoor's Rocky Road: A Tech Stock's Fate in the Housing Market? (OPEN)...

    • kappasignal.com
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). OpenDoor's Rocky Road: A Tech Stock's Fate in the Housing Market? (OPEN) (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/opendoors-rocky-road-tech-stocks-fate.html
    Explore at:
    Dataset updated
    Apr 21, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    OpenDoor's Rocky Road: A Tech Stock's Fate in the Housing Market? (OPEN)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. T

    United States Existing Home Sales

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Existing Home Sales [Dataset]. https://tradingeconomics.com/united-states/existing-home-sales
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - May 31, 2025
    Area covered
    United States
    Description

    Existing Home Sales in the United States increased to 4030 Thousand in May from 4000 Thousand in April of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  13. c

    Global Stone Flooring Market Report 2025 Edition, Market Size, Share, CAGR,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Global Stone Flooring Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/stone-flooring-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global stone flooring market size was valued at USD XX billion in 2024 and is expected to reach USD XX billion at a CAGR of XX% during the forecast period from 2024 to 2029

    • The global stone flooring market will grow significantly by XX% CAGR between 2024 to 2029. • Indicates the region and segment that is expected to witness the fastest growth as well as to dominate the market. • The report includes an analysis of the regional as well as market trends, key players, application areas, and market growth strategies. • Detailed analysis of Market Drivers, Restraints and Opportunities • Asia Pacific dominated the market and accounted for the highest revenue of XX% in 2023 and it is projected that it will grow at a CAGR of XX% in the future. • The report consists size of the market. Market Dynamics of Stone Flooring Market

    Key Drivers

    Infrastructural developments are boosting the stone flooring market growth
    

    New construction and home renovation projects are growing as the housing market improves, which encourages developers and homeowners to choose premium materials that raise the value and appeal of their properties. The market for stone flooring is largely driven by new construction, which generates a large demand for flooring options. Natural stone is preferred by both developers and homeowners because of its classic elegance, enduring quality, and capacity to raise the value of a property. Materials like marble, granite, and travertine are commonly used in new residential constructions, ranging from luxury homes to high-rise apartments, because of their ability to improve interior aesthetics and offer long-lasting performance. Stone flooring is preferred for commercial projects with high foot traffic, such as office buildings, hotels, and retail spaces, due to its durability and minimal upkeep needs. Stone flooring's adaptability to different architectural styles and its practicality make it a preferred option, which adds to its continued appeal in the building sector. The demand for stone flooring is anticipated to increase as new construction projects are undertaken worldwide. A common choice among homeowners looking to update and increase the value of their homes is natural stone flooring, such as marble, granite, and travertine. Renovation projects often entail replacing outdated or worn-out flooring with high-quality materials that not only enhance the visual appeal but also provide long-term advantages like easy maintenance and durability.

    For Instance, the improvement in the housing market index from 44 in January 2024, to 54 in April 2024, as reported by the National Association of Home Builders, signifies a strengthening housing market, positively single-family sales for the next six months expected to rise from 57 to 60, and prospective buyer traffic, from 29 to 34, reflects growing confidence among builders and buyers. This combination of new construction and renovation, driven by a stronger housing market, significantly boosts demand for stone flooring, highlighting its role in creating luxurious, durable and visually appealing living spaces.

    (source https://www.nahb.org/news-and-economics/press-releases/2024/01/builder-sentiment-surges-on-falling-interest-rates)

    Rapid Urbanization and Increasing Disposable Income is leading to growth of Stone Flooring market
    

    The trend of global urbanization has increased the need for both residential and non-residential infrastructure construction. Moreover, a number of studies forecast expansion in the US, China, and Indian construction industries. The majority of stone flooring is used in the building and construction sector. Emerging economies have seen a sharp increase in the consumption of these commodities due to rapid urbanization and industrialization.

    The need for housing expands along with the population. In residential construction projects, this creates a need for flooring materials. The rising demand for various flooring materials benefits the flooring market, whether for new house constructions or renovations. Interior design, a larger selection of designs, and increased investment in home renovation projects in developing countries. Additionally, floors are a crucial part of the structure because they provide a level, smooth, and aesthetically pleasing surface that enhances the room's atmosphere. As a result, the increasing urban de...

  14. k

    Lennar Housing Market: (LEN) Building a Brighter Future for Shareholders?...

    • kappasignal.com
    Updated Sep 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Lennar Housing Market: (LEN) Building a Brighter Future for Shareholders? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/lennar-housing-market-len-building.html
    Explore at:
    Dataset updated
    Sep 8, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Lennar Housing Market: (LEN) Building a Brighter Future for Shareholders?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. k

    Tri Pointe Homes: Navigating the Housing Market (TPH) (Forecast)

    • kappasignal.com
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Tri Pointe Homes: Navigating the Housing Market (TPH) (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/tri-pointe-homes-navigating-housing.html
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Tri Pointe Homes: Navigating the Housing Market (TPH)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. k

    LRE: Will the Housing Market's Strength Continue to Lift This Stock?...

    • kappasignal.com
    Updated Dec 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). LRE: Will the Housing Market's Strength Continue to Lift This Stock? (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/lre-will-housing-markets-strength.html
    Explore at:
    Dataset updated
    Dec 29, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LRE: Will the Housing Market's Strength Continue to Lift This Stock?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. k

    Landsea Homes' (LSEA) Future: Analysts Project Growth Amid Housing Market...

    • kappasignal.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Landsea Homes' (LSEA) Future: Analysts Project Growth Amid Housing Market Shifts (Forecast) [Dataset]. https://www.kappasignal.com/2025/03/landsea-homes-lsea-future-analysts.html
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Landsea Homes' (LSEA) Future: Analysts Project Growth Amid Housing Market Shifts

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. m

    Global Electric Vehicle (EV) Battery Housing Market Research Report:...

    • marknteladvisors.com
    Updated Apr 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MarkNtel Advisors (2023). Global Electric Vehicle (EV) Battery Housing Market Research Report: Forecast (2023-2028) [Dataset]. https://www.marknteladvisors.com/research-library/global-electric-vehicle-battery-housing-market.html
    Explore at:
    Dataset updated
    Apr 22, 2023
    Dataset authored and provided by
    MarkNtel Advisors
    License

    https://www.marknteladvisors.com/privacy-policyhttps://www.marknteladvisors.com/privacy-policy

    Area covered
    Global
    Description

    The Electric Vehicle (EV) Battery Housing Market is projected to grow at a CAGR of around 38% during the forecast period 2023-28, says MarkNtel Advisors in its latest market analysis report.

  19. What’s happening in the UK housing market?

    • cjhole.co.uk
    • belvoir.co.uk
    • +11more
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataloft by PriceHubble (2024). What’s happening in the UK housing market? [Dataset]. https://www.cjhole.co.uk/market-insights/
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    PriceHubble AG
    Authors
    Dataloft by PriceHubble
    Area covered
    United Kingdom
    Description

    UK house price, regional house prices, rents and yields

  20. k

    Dow Jones U.S. Real Estate: A True Reflection of the Market? (Forecast)

    • kappasignal.com
    Updated Apr 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones U.S. Real Estate: A True Reflection of the Market? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-us-real-estate-true.html
    Explore at:
    Dataset updated
    Apr 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones U.S. Real Estate: A True Reflection of the Market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Nahb Housing Market Index [Dataset]. https://tradingeconomics.com/united-states/nahb-housing-market-index

United States Nahb Housing Market Index

United States Nahb Housing Market Index - Historical Dataset (1985-01-31/2025-06-30)

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
json, excel, csv, xmlAvailable download formats
Dataset updated
Jun 17, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1985 - Jun 30, 2025
Area covered
United States
Description

Nahb Housing Market Index in the United States decreased to 32 points in June from 34 points in May of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu