100+ datasets found
  1. New York Housing Market

    • kaggle.com
    Updated Jan 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2024). New York Housing Market [Dataset]. http://doi.org/10.34740/kaggle/dsv/7351086
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Nidula Elgiriyewithana ⚡
    Area covered
    New York
    Description

    Description:

    This dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.

    DOI

    Key Features:

    • BROKERTITLE: Title of the broker
    • TYPE: Type of the house
    • PRICE: Price of the house
    • BEDS: Number of bedrooms
    • BATH: Number of bathrooms
    • PROPERTYSQFT: Square footage of the property
    • ADDRESS: Full address of the house
    • STATE: State of the house
    • MAIN_ADDRESS: Main address information
    • ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
    • LOCALITY: Locality information
    • SUBLOCALITY: Sublocality information
    • STREET_NAME: Street name
    • LONG_NAME: Long name
    • FORMATTED_ADDRESS: Formatted address
    • LATITUDE: Latitude coordinate of the house
    • LONGITUDE: Longitude coordinate of the house

    Potential Use Cases:

    • Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
    • Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
    • Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
    • Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
    • Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.

    If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you

  2. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  3. US Real Estate Market Report and Forecast 2026-2032

    • thereportcubes.com
    pdf
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Report Cube (2025). US Real Estate Market Report and Forecast 2026-2032 [Dataset]. https://www.thereportcubes.com/report-store/us-real-estate-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    Authors
    The Report Cube
    License

    https://www.thereportcubes.com/privacy-policyhttps://www.thereportcubes.com/privacy-policy

    Area covered
    Country Level
    Description

    US Real Estate Market Size & Growth 2025-2032: Valued at USD 3T in 2025, the market is projected to reach nearly USD 3.9T by 2032, growing at a CAGR of 4.12%. Get the latest industry forecast and analysis.

  4. Housing Prices Regression 🏘️

    • kaggle.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Den_Kuznetz (2024). Housing Prices Regression 🏘️ [Dataset]. https://www.kaggle.com/datasets/denkuznetz/housing-prices-regression
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Den_Kuznetz
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Task Description: Real Estate Price Prediction

    This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.

    The goal is to build a regression model that can predict the Price of a property based on the provided features.

    Dataset Columns:

    ID: A unique identifier for each property.

    Square_Feet: The area of the property in square meters.

    Num_Bedrooms: The number of bedrooms in the property.

    Num_Bathrooms: The number of bathrooms in the property.

    Num_Floors: The number of floors in the property.

    Year_Built: The year the property was built.

    Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).

    Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).

    Garage_Size: The size of the garage in square meters.

    Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).

    Distance_to_Center: The distance from the property to the city center in kilometers.

    Price: The target variable that represents the price of the property. This is the value we aim to predict.

    Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.

  5. Median sale price of existing homes sold in the U.S. 1990-2024 with forecast...

    • statista.com
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Median sale price of existing homes sold in the U.S. 1990-2024 with forecast for 2027 [Dataset]. https://www.statista.com/topics/1618/residential-housing-in-the-us/
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The U.S. housing market continues to evolve, with the median price for existing homes forecast to fall to 408,000 U.S. dollars by 2027. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately 26,700 U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding 74,000 U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with a modest price increase of 4.1 percent in 2024. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in 2025, with Rhode Island and West Virginia leading the packby home appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.

  6. U

    United States House Prices Growth

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2022 - Dec 1, 2024
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 5.2% YoY in Dec 2024, following an increase of 5.4% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Dec 2024, with an average growth rate of 5.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  7. T

    United States Nahb Housing Market Index

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Nahb Housing Market Index [Dataset]. https://tradingeconomics.com/united-states/nahb-housing-market-index
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Sep 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1985 - Oct 31, 2025
    Area covered
    United States
    Description

    Nahb Housing Market Index in the United States increased to 37 points in October from 32 points in September of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. Residential Real Estate Market Size, Share, Growth & Industry Trends Report,...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Residential Real Estate Market Size, Share, Growth & Industry Trends Report, 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Residential Real Estate Market is Segmented by Property Type (Apartments & Condominiums, and Landed Houses & Villas), by Price Band (Affordable, Mid-Market, and Luxury/Super-prime), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (North America, South America, Europe, Asia-Pacific, and Middle East & Africa). The Market Forecasts are Provided in Terms of Value (USD).

  9. c

    Redfin usa properties dataset

    • crawlfeeds.com
    csv, zip
    Updated Jun 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Redfin usa properties dataset [Dataset]. https://crawlfeeds.com/datasets/redfin-usa-properties-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Explore the Redfin USA Properties Dataset, available in CSV format. This extensive dataset provides valuable insights into the U.S. real estate market, including detailed property listings, prices, property types, and more across various states and cities. Perfect for those looking to conduct in-depth market analysis, real estate investment research, or financial forecasting.

    Key Features:

    • Comprehensive Property Data: Includes essential details such as listing prices, property types, square footage, and the number of bedrooms and bathrooms.
    • Geographic Coverage: Encompasses a wide range of U.S. states and cities, providing a broad view of the national real estate market.
    • Historical Trends: Analyze past market data to understand price movements, regional differences, and market trends over time.
    • Geo-Location Details: Enables spatial analysis and mapping by including precise geographical coordinates of properties.

    Who Can Benefit From This Dataset:

    • Real Estate Investors: Identify lucrative opportunities by analyzing property values, market trends, and regional price variations.
    • Market Analysts: Gain a deeper understanding of the U.S. housing market dynamics to inform research and reporting.
    • Data Scientists and Researchers: Leverage detailed real estate data for modeling, urban studies, or economic analysis.
    • Financial Analysts: Utilize the dataset for financial modeling, helping to predict market behavior and assess investment risks.

    Download the Redfin USA Properties Dataset to access essential information on the U.S. housing market, ideal for professionals in real estate, finance, and data analytics. Unlock key insights to make informed decisions in a dynamic market environment.

    Looking for deeper insights or a custom data pull from Redfin?
    Send a request with just one click and explore detailed property listings, price trends, and housing data.
    🔗 Request Redfin Real Estate Data

  10. 🏙️ Malaysian Condominium Prices Data

    • kaggle.com
    Updated Sep 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcus Chan (2023). 🏙️ Malaysian Condominium Prices Data [Dataset]. https://www.kaggle.com/datasets/mcpenguin/raw-malaysian-housing-prices-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Marcus Chan
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Inspired by the quintessential House Prices Starter Competition and the popular Melbourne Housing Dataset, this dataset captures 4K+ condominium unit listings on the Malaysian housing website mudah.my.

    Like the above datasets, your job is to predict the house prices given certain parameters.

    The data was scraped directly from the website using this data collection notebook. I might adapt the code to include houses as well in the future, but scraping the data takes a while due to having to wait for the website to load and having to timeout to account for CloudFlare's protections.

    Note: This data is a lot less clean and organized than the data in the two datasets mentioned above. However, this is a good opportunity to practice data cleaning techniques, as this is something that is often overlooked on Kaggle. That being said, I made a starter notebook that goes through the data cleaning steps and outputs a fairly cleaned version of the dataset.

    Data Description

    • description: The full (unfiltered) description for the unit listing.
    • Ad List: The ID of the listing on the website.
    • Category: The category of the listing. It will most likely be Apartment / Condominium.
    • Facilities: The facilities that the apartment has, in a comma-separated list.
    • Building Name: The name of the building.
    • Developer: The developer for the building.
    • Tenure Type: The type of tenure for the building.
    • Address: The address of the building. You can refer to this link for a description of what Malaysian addresses look like.
    • Completion Year: The completion year of the building. If the building is still under construction, this is listed as -.
    • # of Floors: The number of floors in the building.
    • Total Units: The total number of units in the building.
    • Property Type: The type of property.
    • Bedroom: The number of bedrooms in the unit.
    • Bathroom: The number of bathrooms in the unit.
    • Parking Lot: The number of parking lots assigned to the unit, if any.
    • Floor Range: The floor range for the building.
    • Property Size: The size of the unit.
    • Land Title: The title given to the land. This link explains what land titles are.
    • Firm Type: The type of firm who posted the listing.
    • Firm Number: The ID of the firm who posted the listing.
    • REN Number: The REN number of the firm who posted the listing. Refer to this link for what REN numbers are.
    • price: The price of the unit. This is what you are trying to predict.
    • Nearby School/School: If there is a nearby school to the unit, which school it is.
    • Park: If there is a nearby park to the unit, which park it is.
    • Nearby Railway Station: If there is a nearby railway station to the unit, which railway station it is.
    • Bus Stop: If there is a nearby bus stop to the unit, which station it is.
    • Nearby Mall/Mall: If there is a nearby mall to the unit, which mall it is.
    • Highway: If there is a nearby highway to the unit, which highway it is.
  11. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

  12. House price change forecast in Spain and Portugal 2023, with a forecast by...

    • statista.com
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price change forecast in Spain and Portugal 2023, with a forecast by 2025 [Dataset]. https://www.statista.com/statistics/1165916/residential-real-estate-price-forecast-change-in-spain-and-portugal/
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2022
    Area covered
    Portugal, Spain
    Description

    House prices in Spain are forecast to fall in 2024, after increasing by *** percent in 2023. Nevertheless, prices are expected to pick up in 2025, with an increase of ***********. The Portuguese housing market, on the other hand, grew by *** percent in 2023, but was forecast to contract in the next two years.

  13. Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (Australia, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/residential-real-estate-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Brazil, France, Europe, Mexico, Germany, Japan, United Kingdom, Canada, North America, United States
    Description

    Snapshot img

    Residential Real Estate Market Size 2025-2029

    The residential real estate market size is valued to increase USD 485.2 billion, at a CAGR of 4.5% from 2024 to 2029. Growing residential sector globally will drive the residential real estate market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 55% growth during the forecast period.
    By Mode Of Booking - Sales segment was valued at USD 926.50 billion in 2023
    By Type - Apartments and condominiums segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 41.01 billion
    Market Future Opportunities: USD 485.20 billion
    CAGR : 4.5%
    APAC: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving sector that continues to shape the global economy. With increasing marketing initiatives and the growing residential sector globally, the market presents significant opportunities for growth. However, regulatory uncertainty looms large, posing challenges for stakeholders. According to recent reports, technology adoption in residential real estate has surged, with virtual tours and digital listings becoming increasingly popular. In fact, over 40% of homebuyers in the US prefer virtual property viewings. Core technologies such as artificial intelligence and blockchain are revolutionizing the industry, offering enhanced customer experiences and streamlined processes.
    Despite these advancements, regulatory compliance remains a major concern, with varying regulations across regions adding complexity to market operations. The market is a complex and intriguing space, with ongoing activities and evolving patterns shaping its future trajectory.
    

    What will be the Size of the Residential Real Estate Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Residential Real Estate Market Segmented and what are the key trends of market segmentation?

    The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Mode Of Booking
    
      Sales
      Rental or lease
    
    
    Type
    
      Apartments and condominiums
      Landed houses and villas
    
    
    Location
    
      Urban
      Suburban
      Rural
    
    
    End-user
    
      Mid-range housing
      Affordable housing
      Luxury housing
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Mode Of Booking Insights

    The sales segment is estimated to witness significant growth during the forecast period.

    Request Free Sample

    The Sales segment was valued at USD 926.50 billion in 2019 and showed a gradual increase during the forecast period.

    Request Free Sample

    Regional Analysis

    APAC is estimated to contribute 55% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    See How Residential Real Estate Market Demand is Rising in APAC Request Free Sample

    The market in the Asia Pacific (APAC) region holds a significant share and is projected to lead the global market growth. Factors fueling this expansion include the region's rapid urbanization and increasing consumer spending power. Notably, residential and commercial projects in countries like India and China are experiencing robust development. The residential real estate sector in China plays a pivotal role in the economy and serves as a major growth driver for the market.

    With these trends continuing, the APAC the market is poised for continued expansion during the forecast period.

    Market Dynamics

    Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    In the Residential Real Estate Market, understanding the impact property tax rates home values and effect interest rates mortgage affordability is essential for buyers and investors. Key factors affecting home price appreciation and factors influencing housing affordability shape market trends, while the importance property due diligence process and requirements environmental site assessment ensure informed decisions. Investors benefit from methods calculating rental property roi, process home equity loan application, and benefits real estate portfolio diversification. Tools like property management software efficiency and techniques effective property marketing help tackle challenges managing rental properties. Additionally, strategies successf

  14. Number of existing homes sold in the U.S. 1995-2024, with a forecast until...

    • statista.com
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of existing homes sold in the U.S. 1995-2024, with a forecast until 2026 [Dataset]. https://www.statista.com/topics/1618/residential-housing-in-the-us/
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.

  15. US Residential Real Estate Market Analysis | Trends, Forecast, Size &...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). US Residential Real Estate Market Analysis | Trends, Forecast, Size & Industry Growth Report 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market-in-usa
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The United States Residential Real Estate Market is Segmented by Property Type (Apartments and Condominiums, and Villas and Landed Houses), by Price Band (Affordable, Mid-Market and Luxury), by Business Model (Sales and Rental), by Mode of Sale (Primary and Secondary), and by Region (Northeast, Midwest, Southeast, West and Southwest). The Market Forecasts are Provided in Terms of Value (USD)

  16. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - Jul 31, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 433.40 points in July from 433.90 points in June of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  17. T

    United States Existing Home Sales Prices

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Existing Home Sales Prices [Dataset]. https://tradingeconomics.com/united-states/single-family-home-prices
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - Sep 30, 2025
    Area covered
    United States
    Description

    Single Family Home Prices in the United States decreased to 415200 USD in September from 422600 USD in August of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. E

    United States Real Estate Market Growth Analysis - Forecast Trends and...

    • expertmarketresearch.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claight Corporation (Expert Market Research), United States Real Estate Market Growth Analysis - Forecast Trends and Outlook (2025-2034) [Dataset]. https://www.expertmarketresearch.com/reports/united-states-real-estate-market
    Explore at:
    pdf, excel, csv, pptAvailable download formats
    Dataset authored and provided by
    Claight Corporation (Expert Market Research)
    License

    https://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy

    Time period covered
    2025 - 2034
    Area covered
    United States
    Variables measured
    CAGR, Forecast Market Value, Historical Market Value
    Measurement technique
    Secondary market research, data modeling, expert interviews
    Dataset funded by
    Claight Corporation (Expert Market Research)
    Description

    The United States real estate market was valued at USD 3.43 Trillion in 2024. The industry is expected to grow at a CAGR of 2.80% during the forecast period of 2025-2034 to reach a value of USD 4.52 Trillion by 2034. The market growth is mainly driven by the rising corporate investment, particularly in addressing the nation’s affordable housing shortage.

    Major corporations are actively investing to integrate housing stability with social responsibility, supporting both new construction and the preservation of existing homes. In September 2024, UnitedHealth Group surpassed USD 1 billion in investments for affordable and mixed-income housing through direct capital and tax credits. These projects span 31 states and have delivered over 25,000 homes, simultaneously improved community health and providing secure housing for low- and moderate-income households.

    Such corporate involvements are reshaping trends in United States real estate market by expanding the supply of affordable housing, reducing barriers for renters and homeowners, and stimulating development in high-demand urban and suburban areas. By aligning financial resources with strategic planning, corporations are enabling scalable solutions that meet social and economic objectives while enhancing overall market efficiency.

  19. Residential real estate prices forecast change in the Netherlands 2023-2024

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Residential real estate prices forecast change in the Netherlands 2023-2024 [Dataset]. https://www.statista.com/statistics/654004/residential-real-estate-prices-forecast-change-in-the-netherlands/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 25, 2023
    Area covered
    Netherlands
    Description

    The quarterly pulse monitor expects the Dutch house prices to fall by **** percent in 2023 due to the decline in purchasing power, higher cost of borrowing and worsening economic conditions. The price of Dutch residential property in 2022 was approximately ******* euros. These developments came on top of other issues that were already prevalent in the Dutch housing market, such as the discussion about nitrogen and its effect on housing construction. The effects of nitrogen on the price of a house At the end of 2019, months before the coronavirus, there was already a lot of uncertainty whether their predictions would hold true. This had to do with the so-called “nitrogen decision” (in Dutch: stikstofbesluit) in May 2019. Simply put, a Dutch advisory body found that the domestic policy for nitrogen emission (formally known as Programmatische Aanpak Stikstof or Programmatic Approach Nitrogen) went against European rules. As of August 2019, a sizable share of the Dutch population was not familiar with this nitrogen policy. However, the advisory body’s decision led to an immediate stop to all construction in the country (amongst other things). By the end of 2019, this stop was still in place. For 2020, newly to be constructed houses have to comply to new rules regarding nitrogen emission. This puts new pressure on a housing market that already had to keep with increasing demand. How about the housing market in Amsterdam? In the year 2022, Amsterdam ranked as the most expensive city in the Netherlands to acquire an apartment, with an average price per square meter that was ***** euros more expensive than in Utrecht. Amsterdam was also well above the average rents found in other cities. A house in Amsterdam had a rent of approximately ** euros per square meter in 2023, whereas rents in Rotterdam cost roughly ** euros per square meter. It should be noted, however, that rent changes in the Dutch capital are significantly lower than those found in Rotterdam and especially Utrecht.

  20. T

    Sweden Real Estate Price Index

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 1, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2002). Sweden Real Estate Price Index [Dataset]. https://tradingeconomics.com/sweden/housing-index
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Feb 1, 2002
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1975 - Sep 30, 2025
    Area covered
    Sweden
    Description

    Housing Index in Sweden increased to 959 points in the third quarter of 2025 from 945 points in the second quarter of 2025. This dataset provides - Sweden House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nidula Elgiriyewithana ⚡ (2024). New York Housing Market [Dataset]. http://doi.org/10.34740/kaggle/dsv/7351086
Organization logo

New York Housing Market

Unlock the Door to New York Real Estate Excellence

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 6, 2024
Dataset provided by
Kaggle
Authors
Nidula Elgiriyewithana ⚡
Area covered
New York
Description

Description:

This dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.

DOI

Key Features:

  • BROKERTITLE: Title of the broker
  • TYPE: Type of the house
  • PRICE: Price of the house
  • BEDS: Number of bedrooms
  • BATH: Number of bathrooms
  • PROPERTYSQFT: Square footage of the property
  • ADDRESS: Full address of the house
  • STATE: State of the house
  • MAIN_ADDRESS: Main address information
  • ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
  • LOCALITY: Locality information
  • SUBLOCALITY: Sublocality information
  • STREET_NAME: Street name
  • LONG_NAME: Long name
  • FORMATTED_ADDRESS: Formatted address
  • LATITUDE: Latitude coordinate of the house
  • LONGITUDE: Longitude coordinate of the house

Potential Use Cases:

  • Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
  • Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
  • Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
  • Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
  • Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.

If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you

Search
Clear search
Close search
Google apps
Main menu