Facebook
TwitterIn the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.
Facebook
TwitterPortugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Real Estate company datasets containing samples of house sizes and prices in the United States from Arizona state and Florida state over the past few years.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Oregon (ORSTHPI) from Q1 1975 to Q3 2025 about OR, appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.
The dataset is designed to capture essential attributes for predicting house prices, including:
Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.
Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.
3. Correlation Between Features
A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.
The dataset is well-suited for various machine learning and data analysis applications, including:
House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.
Facebook
TwitterHouse prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Florida (FLSTHPI) from Q1 1975 to Q3 2025 about appraisers, FL, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterThe median house price in *****, Atherton, California, was about *** million U.S. dollars. This made it the most expensive zip code in the United States in 2023. ***** Sagaponack, N.Y., was the runner-up with a median house price of about *** million U.S. dollars. Of the ** most expensive zip codes in the United States in 2026, six were in California.
Facebook
TwitterWest Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Facebook
TwitterExtract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.
A. Usecase/Applications possible with the data:
Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data
Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.
Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.
Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.
Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.
Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.
Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.
How does it work?
Facebook
TwitterMexico's housing market demonstrates significant regional price variations, with Mexico City emerging as the most expensive area for residential property in the third quarter of 2025. The capital city's average house price of 3.93 million Mexican pesos far exceeds the national average of 1.86 million pesos, highlighting the stark contrast in property values across the country. This disparity reflects broader economic and demographic trends shaping Mexico's real estate landscape. Sustained growth in housing prices The Mexican housing market has experienced substantial growth over the past decade, with home prices more than doubling since 2010. By the second quarter of 2025, the nominal house price index reached 287 points, representing a 187 percent increase from the baseline year. Even when adjusted for inflation, the real house price index showed a notable 50 percent growth, underscoring the market's resilience and attractiveness to investors. The mortgage market is dominated by three main player types: Infonavit, Fovissste, and commercial banks including Sofomes. In 2023, Infonavit, a scheme by Mexico's National Housing Fund Institute which provides lending to workers in the formal sector, was responsible for the majority of mortgages granted to individuals. Challenges in mortgage lending Despite the overall growth in housing prices, Mexico's mortgage market has faced challenges in recent years. The number of new mortgage loans granted has declined over the past decade, falling by approximately 200,000 loans between 2008 and 2023. This decrease in lending activity may be attributed to various factors, including economic uncertainties and changing consumer preferences. The state of Mexico, which is home to 13 percent of the country's population, likely plays a significant role in shaping these trends given its large demographic influence on the national housing market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Change-In-Cash Time Series for AGNC Investment Corp. AGNC Investment Corp. provides private capital to housing market in the United States. The company invests in residential mortgage pass-through securities and collateralized mortgage obligations for which the principal and interest payments are guaranteed by the United States government-sponsored enterprise or by the United States government agency. It qualifies as a real estate investment trust for federal income tax purposes. The company generally would not be subject to federal or state corporate income taxes if it distributes at least 90% of its taxable income to its stockholders. The company was formerly known as American Capital Agency Corp. and changed its name to AGNC Investment Corp. in September 2016. AGNC Investment Corp. was incorporated in 2008 and is headquartered in Bethesda, Maryland.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Net-Income-From-Continuing-Operations Time Series for Walker & Dunlop Inc. Walker & Dunlop, Inc., through its subsidiaries, originates, sells, and services a range of multifamily and other commercial real estate financing products and services for owners and developers of real estate in the United States. It operates through three segments: Capital Markets, Servicing & Asset Management, and Corporate. The company offers first mortgage, second trust, supplemental, construction, mezzanine, preferred equity, and small-balance loans. It also provides finance for multifamily, manufactured housing communities, student housing, affordable housing, and senior housing properties under the Fannie Mae's DUS program; and construction and permanent loans to developers and owners of multifamily housing, affordable housing, senior housing, and healthcare facilities. In addition, the company acts as a debt broker to work with life insurance companies, banks, and other institutional lenders to find debt and/or equity solution for the borrowers' needs; and offers property sales brokerage services to owners and developers of multifamily properties, and commercial real estate and multifamily property appraisals for various investors. Further, it provides multifamily appraisal and valuation services; and real estate-related investment banking and advisory services, including housing market research. Additionally, the company offers servicing and asset-managing the portfolio of loans; originates loans through its principal lending and investing activities; and manages third-party capital invested in tax credit equity funds focused on the LIHTC sector and other commercial real estate sectors. Walker & Dunlop, Inc. was founded in 1937 and is headquartered in Bethesda, Maryland.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Total-Long-Term-Liabilities Time Series for AGNC Investment Corp. AGNC Investment Corp. provides private capital to housing market in the United States. The company invests in residential mortgage pass-through securities and collateralized mortgage obligations for which the principal and interest payments are guaranteed by the United States government-sponsored enterprise or by the United States government agency. It qualifies as a real estate investment trust for federal income tax purposes. The company generally would not be subject to federal or state corporate income taxes if it distributes at least 90% of its taxable income to its stockholders. The company was formerly known as American Capital Agency Corp. and changed its name to AGNC Investment Corp. in September 2016. AGNC Investment Corp. was incorporated in 2008 and is headquartered in Bethesda, Maryland.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Active Listing Count in the United States (ACTLISCOUUS) from Jul 2016 to Oct 2025 about active listing, listing, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ebitda Time Series for AGNC Investment Corp. AGNC Investment Corp. provides private capital to housing market in the United States. The company invests in residential mortgage pass-through securities and collateralized mortgage obligations for which the principal and interest payments are guaranteed by the United States government-sponsored enterprise or by the United States government agency. It qualifies as a real estate investment trust for federal income tax purposes. The company generally would not be subject to federal or state corporate income taxes if it distributes at least 90% of its taxable income to its stockholders. The company was formerly known as American Capital Agency Corp. and changed its name to AGNC Investment Corp. in September 2016. AGNC Investment Corp. was incorporated in 2008 and is headquartered in Bethesda, Maryland.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
TwitterThe median sales price of the existing privately owned single-family homes in the United States increased slightly in 2024. The most expensive homes were found in San Jose-Sunnyvale-Santa Clara, CA, where the median sales price was *** million U.S. dollars. Hawaii and Delaware experienced the strongest home appreciation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Common-Stock Time Series for Walker & Dunlop Inc. Walker & Dunlop, Inc., through its subsidiaries, originates, sells, and services a range of multifamily and other commercial real estate financing products and services for owners and developers of real estate in the United States. It operates through three segments: Capital Markets, Servicing & Asset Management, and Corporate. The company offers first mortgage, second trust, supplemental, construction, mezzanine, preferred equity, and small-balance loans. It also provides finance for multifamily, manufactured housing communities, student housing, affordable housing, and senior housing properties under the Fannie Mae's DUS program; and construction and permanent loans to developers and owners of multifamily housing, affordable housing, senior housing, and healthcare facilities. In addition, the company acts as a debt broker to work with life insurance companies, banks, and other institutional lenders to find debt and/or equity solution for the borrowers' needs; and offers property sales brokerage services to owners and developers of multifamily properties, and commercial real estate and multifamily property appraisals for various investors. Further, it provides multifamily appraisal and valuation services; and real estate-related investment banking and advisory services, including housing market research. Additionally, the company offers servicing and asset-managing the portfolio of loans; originates loans through its principal lending and investing activities; and manages third-party capital invested in tax credit equity funds focused on the LIHTC sector and other commercial real estate sectors. Walker & Dunlop, Inc. was founded in 1937 and is headquartered in Bethesda, Maryland.
Facebook
TwitterZillow operates an industry-leading economics and analytics bureau led by Zillow’s Chief Economist, Dr. Stan Humphries. At Zillow, Dr. Humphries and his team of economists and data analysts produce extensive housing data and analysis covering more than 500 markets nationwide. Zillow Research produces various real estate, rental and mortgage-related metrics and publishes unique analyses on current topics and trends affecting the housing market.
At Zillow’s core is our living database of more than 100 million U.S. homes, featuring both public and user-generated information including number of bedrooms and bathrooms, tax assessments, home sales and listing data of homes for sale and for rent. This data allows us to calculate, among other indicators, the Zestimate, a highly accurate, automated, estimated value of almost every home in the country as well as the Zillow Home Value Index and Zillow Rent Index, leading measures of median home values and rents.
The Zillow Rent Index is the median estimated monthly rental price for a given area, and covers multifamily, single family, condominium, and cooperative homes in Zillow’s database, regardless of whether they are currently listed for rent. It is expressed in dollars and is seasonally adjusted. The Zillow Rent Index is published at the national, state, metro, county, city, neighborhood, and zip code levels.
Zillow produces rent estimates (Rent Zestimates) based on proprietary statistical and machine learning models. Within each county or state, the models observe recent rental listings and learn the relative contribution of various home attributes in predicting prevailing rents. These home attributes include physical facts about the home, prior sale transactions, tax assessment information and geographic location as well as the estimated market value of the home (Zestimate). Based on the patterns learned, these models estimate rental prices on all homes, including those not presently for rent. Because of the availability of Zillow rental listing data used to train the models, Rent Zestimates are only available back to November 2010; therefore, each ZRI time series starts on the same date.
The rent index data was calculated from Zillow's proprietary Rent Zestimates and published on its website.
What city has the highest and lowest rental prices in the country? Which metropolitan area is the most expensive to live in? Where have rental prices increased in the past five years and where have they remained the same? What city or state has the lowest cost per square foot?
Facebook
TwitterIn the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.