100+ datasets found
  1. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  2. Average price per square meter of an apartment in Europe 2025, by city

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average price per square meter of an apartment in Europe 2025, by city [Dataset]. https://www.statista.com/statistics/1052000/cost-of-apartments-in-europe-by-city/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    Geneva stands out as Europe's most expensive city for apartment purchases in early 2025, with prices reaching a staggering 15,720 euros per square meter. This Swiss city's real estate market dwarfs even high-cost locations like Zurich and London, highlighting the extreme disparities in housing affordability across the continent. The stark contrast between Geneva and more affordable cities like Nantes, France, where the price was 3,700 euros per square meter, underscores the complex factors influencing urban property markets in Europe. Rental market dynamics and affordability challenges While purchase prices vary widely, rental markets across Europe also show significant differences. London maintained its position as the continent's priciest city for apartment rentals in 2023, with the average monthly costs for a rental apartment amounting to 36.1 euros per square meter. This figure is double the rent in Lisbon, Portugal or Madrid, Spain, and substantially higher than in other major capitals like Paris and Berlin. The disparity in rental costs reflects broader economic trends, housing policies, and the intricate balance of supply and demand in urban centers. Economic factors influencing housing costs The European housing market is influenced by various economic factors, including inflation and energy costs. As of April 2025, the European Union's inflation rate stood at 2.4 percent, with significant variations among member states. Romania experienced the highest inflation at 4.9 percent, while France and Cyprus maintained lower rates. These economic pressures, coupled with rising energy costs, contribute to the overall cost of living and housing affordability across Europe. The volatility in electricity prices, particularly in countries like Italy where rates are projected to reach 153.83 euros per megawatt hour by February 2025, further impacts housing-related expenses for both homeowners and renters.

  3. F

    Average Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/ASPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.

  4. Residential property price comparison to country average in Europe 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Residential property price comparison to country average in Europe 2024 [Dataset]. https://www.statista.com/statistics/1174620/residential-property-price-comparison-to-country-average-in-europe-by-capital/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Europe
    Description

    Of all the capital cities in Europe, prices in Paris had the highest disproportion to the national average in 2024. A new house in the French capital cost more than ***** times the price of a house outside the city. This was followed by Athens, Munich, and Barcelona.

  5. House Price Prediction Dataset

    • kaggle.com
    zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zafar (2024). House Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
    Explore at:
    zip(29372 bytes)Available download formats
    Dataset updated
    Sep 21, 2024
    Authors
    Zafar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    House Price Prediction Dataset.

    The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.

    1. Dataset Features

    The dataset is designed to capture essential attributes for predicting house prices, including:

    Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.

    2. Feature Distributions

    Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.

    3. Correlation Between Features

    A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.

    4. Potential Use Cases

    The dataset is well-suited for various machine learning and data analysis applications, including:

    House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.

    5. Limitations and ...

  6. c

    Data from: Comparing Two House-Price Booms

    • clevelandfed.org
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2024). Comparing Two House-Price Booms [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2024/ec-202404-comparing-two-house-price-booms
    Explore at:
    Dataset updated
    Feb 27, 2024
    Dataset authored and provided by
    Federal Reserve Bank of Cleveland
    Description

    In this Economic Commentary , we compare characteristics of the 2000–2006 house-price boom that preceded the Great Recession to the house-price boom that began in 2020 during the COVID-19 pandemic. These two episodes of high house-price growth have important differences, including the behavior of rental rates, the dynamics of housing supply and demand, and the state of the mortgage market. The absence of changes in fundamentals during the 2000s is consistent with the literature emphasizing house-price beliefs during this prior episode. In contrast to during the 2000s boom, changes in fundamentals (including rent and demand growth) played a more dominant role in the 2020s house-price boom.

  7. U

    United States House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 3.3% YoY in Sep 2025, following an increase of 4.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2025, with an average growth rate of -12.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  8. Average house price and annual percentage change in the UK 2025, by city

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price and annual percentage change in the UK 2025, by city [Dataset]. https://www.statista.com/statistics/1006395/average-house-price-in-the-uk-by-city/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    United Kingdom
    Description

    The UK housing market continued to show significant regional variations in 2025, with London maintaining its position as the most expensive city for homebuyers. The average house price in the capital stood at ******* British pounds in February, nearly double the national average. However, the market dynamics are shifting, with London experiencing only a modest *** percent annual increase, while other cities like Belfast and Liverpool saw more substantial growth of over **** percent respectively. Affordability challenges and market slowdown Despite the continued price growth in many cities, the UK housing market is facing headwinds. The affordability of mortgage repayments has become the biggest barrier to property purchases, with the majority of the respondents in a recent survey citing it as their main challenge. Moreover, a rising share of Brits have reported affordability as a challenge since 2021, reflecting the impact of rising house prices and higher mortgage rates. The market slowdown is evident in the declining housing transaction volumes, which have plummeted since 2021. European context The stark price differences are mirrored in the broader European context. While London boasts some of the highest property prices among European cities, a comparison of the average transaction price for new homes in different European countries shows a different picture. In 2023, the highest prices were found in Austria, Germany, and France.

  9. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

  10. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  11. c

    Housing data from Homes dot com

    • crawlfeeds.com
    csv, zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2024). Housing data from Homes dot com [Dataset]. https://crawlfeeds.com/datasets/housing-data-from-homes-dot-com
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Sep 21, 2024
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.

    The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.

    Key Features:

    • Record Count: 2 million housing listings from across the USA.
    • Data Fields: Property address, price, property type, bedrooms, bathrooms, square footage, lot size, year built, and availability.
    • Format: CSV format for easy integration with data analysis platforms, machine learning models, and real estate tools.
    • Source: Directly sourced from Homes.com’s USA real estate listings.
    • Geographical Focus: Comprehensive coverage of properties across all regions of the United States.

    Use Cases:

    • Real Estate Market Research: Analyze property prices, market trends, and housing demand in various U.S. regions.
    • Investment Analysis: Use data to identify high-potential properties and regions for real estate investments.
    • Property Comparison: Compare listings by price, location, and features to evaluate market conditions across different cities and states.
    • Machine Learning Models: Build predictive models for price forecasting, property valuation, and real estate recommendation systems.
    • Content Creation: Create real estate-related content, reports, and insights for the U.S. housing market using up-to-date data.

  12. Vital Signs: Home Prices – Bay Area

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-Bay-Area/vnvp-ma92
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  13. Vital Signs: Home Prices – by county

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-by-county/wcca-cxzn
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  14. t

    House Price Index | India | 2013 - 2025 | Data, Charts and Analysis

    • themirrority.com
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). House Price Index | India | 2013 - 2025 | Data, Charts and Analysis [Dataset]. https://www.themirrority.com/data/house_price_index
    Explore at:
    Dataset updated
    Jun 15, 2025
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2013 - Mar 31, 2025
    Area covered
    India
    Variables measured
    House Price Index
    Description

    India's residential house prices - quarterly and annual changes in house prices across cities, expert analysis and comparison with global peers.

  15. House Pricing Ho Chi Minh City

    • kaggle.com
    zip
    Updated Jun 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Duy Thanh Tran (2022). House Pricing Ho Chi Minh City [Dataset]. https://www.kaggle.com/datasets/trnduythanhkhttt/housepricinghcm/code
    Explore at:
    zip(77941 bytes)Available download formats
    Dataset updated
    Jun 25, 2022
    Authors
    Duy Thanh Tran
    Area covered
    Ho Chi Minh City
    Description

    This is the dataset of average housing prices in Ho Chi Minh City, Vietnam.

    Data for districts 1 to 9.

    Data collected from 2017 to 2022

    Data in the form of Time Series Data for predicting house prices, holidays and weekends is not included in this dataset.

    The Date column represents the transaction date Columns from District 1 to District 9 show the average transaction value per square meter.

    With this data, data scientists can: - Compare house prices between districts by year - Forecast house prices in the future, can use singular spectrum analysis to analyze - Evaluate model quality with RMSE or equivalent measures

    Update: HousePricingHCM_v2.csv is including holidays and weekends, We use replacing missing data by average transactions of the days before and after the holiday to fill in the missing data

  16. Data from: Housing Price Indexes

    • kaggle.com
    zip
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francis (2024). Housing Price Indexes [Dataset]. https://www.kaggle.com/datasets/noeyislearning/housing-price-indexes
    Explore at:
    zip(477576 bytes)Available download formats
    Dataset updated
    Nov 29, 2024
    Authors
    Francis
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides a comprehensive overview of new housing price indexes in Canada. The data is sourced from a reliable statistical survey, offering a detailed breakdown of housing prices across different components such as total house and land, house only, and land only. The dataset is structured to include key metrics such as geographical location, price index classification, and specific price values, providing a robust foundation for analyzing housing price dynamics within the country.

    Key Features

    • Price Index Metrics: The dataset includes price indexes for total house and land, house only, and land only, providing a complete picture of housing price dynamics across different components.
    • Geographical Focus: Data is specific to Canada, providing insights into national housing price trends and patterns.
    • Unit of Measurement: Information is presented in index units (201612=100), allowing for straightforward analysis and comparison.
    • Temporal Precision: The data is time-stamped for January 1981, ensuring relevance and accuracy for temporal analysis.

    Potential Uses

    • Real Estate Market Analysis: Assist in understanding the housing price dynamics in Canada, which is crucial for real estate market forecasting and planning.
    • Investment Decisions: Provide insights into optimal investment strategies for real estate in various regions.
    • Economic Policy: Support policymakers in monitoring and ensuring compliance with housing market trends and economic standards.
    • Market-Specific Insights: Evaluate the impact of housing price trends on specific regions and potential growth or decline areas.
    • Strategic Planning: Inform strategic planning for real estate developers and policymakers by providing a clear snapshot of current housing price levels and trends.
  17. w

    2011 Housing Market Typology

    • data.wu.ac.at
    csv, json, xml
    Updated Feb 23, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore City Planning Department (2012). 2011 Housing Market Typology [Dataset]. https://data.wu.ac.at/odso/data_baltimorecity_gov/NzgyYi16cGQ3
    Explore at:
    json, csv, xmlAvailable download formats
    Dataset updated
    Feb 23, 2012
    Dataset provided by
    Baltimore City Planning Department
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    The Typology will assist city government, local foundations and non-profits to understand local market strengths and to appropriately match neighborhood strategies to market conditions, for the best use of public and private resources. In addition, the typology will inform neighborhood level planning efforts and provide residents with an understanding of the local housing market conditions in their communities. Regional Choice: Competitive housing markets with high owner-occupancy rates and high property values in comparison to all other market types. Foreclosure, vacancy and abandonment rates are low. Middle Market Choice: Housing prices above the city��_��s average with strong ownership rates, and low vacancies, but with slightly increased foreclosure rates. Middle Market: Median sales values of $91,000 (above the City��_��s average of $65,000) as well as high homeownership rates. These markets experienced higher foreclosure rates when compared to higher value markets, with slight population loss. Middle Market Stressed: Slightly lower home sale values than the City��_��s average, and have not shown significant sales price appreciation. Vacancies and foreclosure rates are high, and the rate of population loss has increased in this market type, according to the 2010 Census data. Distressed Market: , Have experienced significant deterioration of the housing stock. This market category contains the highest vacancy rates and the lowest homeownership rates, compared to the other market types. It also has experienced some of the most substantial population losses in the City during the past decade.

  18. United States House Listings: Zillow Extract 2023

    • kaggle.com
    zip
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Febin Philips (2023). United States House Listings: Zillow Extract 2023 [Dataset]. https://www.kaggle.com/datasets/febinphilips/us-house-listings-2023/discussion
    Explore at:
    zip(3194623 bytes)Available download formats
    Dataset updated
    Dec 11, 2023
    Authors
    Febin Philips
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    The data was extracted from Zillow.. Zillow is a prominent online real estate marketplace and has data on around 100 million homes The goal is to create a rich and diverse dataset that encompasses a wide range of housing characteristics across different states, cities, and neighborhoods in the United States.This dataset provides valuable insights into real estate trends and property features. Each record represents a unique house listing and includes details such as location, property specifications, market estimates, and more. A total of 3 files are included, more about them in the file description.

    Feature Description:

    1. State: The state in which the property is located (AL:Alabama) . Includes all US states except Hawaii.
    2. City: The city where the property is situated.
    3. Street: The street address of the property.
    4. Zipcode: The postal code associated with the property.
    5. Bedroom: The number of bedrooms in the house.
    6. Bathroom: The number of bathrooms in the house.
    7. Area(sqft): The total area of the house.
    8. PPSq(Price Per Square Foot): The cost per square foot of the property.
    9. LotArea(acres): The total land area associated with the property.
    10. MarketEstimate(Dollars $): Estimated market value of the property. This value is estimated using Zillow's own algorithm.
    11. RentEstimate:(Dollars $) Estimated rental value of the property. This value is estimated using Zillow's own algorithm.
    12. Latitude: The latitude coordinates of the property.
    13. Longitude: The longitude coordinates of the property.
    14. ListedPrice:(Dollars $) The listed price of the property.

    Potential Use Cases:

    • Real Estate Market Analysis: Explore trends in housing prices, market estimates, and rental values across different states and cities.
    • Predictive Modeling: Build predictive models to estimate property prices or rental values based on various features.
    • Feature Engineering: Create new features or derive insights to enhance machine learning models.
  19. Cost of Living

    • kaggle.com
    zip
    Updated Jan 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ste_ (2020). Cost of Living [Dataset]. https://www.kaggle.com/stephenofarrell/cost-of-living
    Explore at:
    zip(23838 bytes)Available download formats
    Dataset updated
    Jan 14, 2020
    Authors
    Ste_
    Description

    This is a comparison of the cost of living in various cities, as gathered by popular site numbeo. All data belongs to them and has been shared with permission

    Currency is Euro

  20. F

    All-Transactions House Price Index for New York

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for New York [Dataset]. https://fred.stlouisfed.org/series/NYSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    New York
    Description

    Graph and download economic data for All-Transactions House Price Index for New York (NYSTHPI) from Q1 1975 to Q3 2025 about appraisers, NY, HPI, housing, price index, indexes, price, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
Organization logo

Housing Prices Dataset

Housing Prices Prediction - Regression Problem

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(4740 bytes)Available download formats
Dataset updated
Jan 12, 2022
Authors
M Yasser H
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

Description:

A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

Acknowledgement:

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Objective:

  • Understand the Dataset & cleanup (if required).
  • Build Regression models to predict the sales w.r.t a single & multiple feature.
  • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
Search
Clear search
Close search
Google apps
Main menu