100+ datasets found
  1. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  2. Forecast house price growth in the UK 2025-2029

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast house price growth in the UK 2025-2029 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    After a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.

  3. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  4. Housing Prices Regression šŸ˜ļø

    • kaggle.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Den_Kuznetz (2024). Housing Prices Regression šŸ˜ļø [Dataset]. https://www.kaggle.com/datasets/denkuznetz/housing-prices-regression
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Den_Kuznetz
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Task Description: Real Estate Price Prediction

    This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.

    The goal is to build a regression model that can predict the Price of a property based on the provided features.

    Dataset Columns:

    ID: A unique identifier for each property.

    Square_Feet: The area of the property in square meters.

    Num_Bedrooms: The number of bedrooms in the property.

    Num_Bathrooms: The number of bathrooms in the property.

    Num_Floors: The number of floors in the property.

    Year_Built: The year the property was built.

    Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).

    Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).

    Garage_Size: The size of the garage in square meters.

    Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).

    Distance_to_Center: The distance from the property to the city center in kilometers.

    Price: The target variable that represents the price of the property. This is the value we aim to predict.

    Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.

  5. Data from: Housing Price Prediction

    • kaggle.com
    zip
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivam Singh (2025). Housing Price Prediction [Dataset]. https://www.kaggle.com/datasets/shivamsingh163248/housing-price-prediction
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jun 29, 2025
    Authors
    Shivam Singh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model? Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley. Objective:

    Understand the Dataset & cleanup (if required).
    Build Regression models to predict the sales w.r.t a single & multiple feature.
    Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
    
  6. U

    United States House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 3.3% YoY in Sep 2025, following an increase of 4.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2025, with an average growth rate of -12.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  7. r

    Home Price Forecast

    • reventure.app
    json
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reventure (2024). Home Price Forecast [Dataset]. https://www.reventure.app/forecast
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Reventure
    License

    https://www.reventure.app/termshttps://www.reventure.app/terms

    Time period covered
    Apr 1, 2024 - Apr 1, 2025
    Area covered
    United States
    Description

    The most accurate home price forecast in the U.S. Housing Market with 72% correlation coefficient in predicting value growth from April 2024 to 2025.

  8. Five-year forecast of house price growth in the UK 2025-2029, by region

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Five-year forecast of house price growth in the UK 2025-2029, by region [Dataset]. https://www.statista.com/statistics/975951/united-kingdom-five-year-forecast-house-price-growth-by-region/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2024
    Area covered
    United Kingdom
    Description

    According to the forecast, the North West and Yorkshire & the Humber are the UK regions expected to see the highest overall growth in house prices over the five-year period between 2025 and 2029. Just behind are the North East and West Midlands. In London, house prices are expected to rise by **** percent.

  9. Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Residential Real Estate Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, and UK), APAC (Australia, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/residential-real-estate-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Europe, Mexico, Brazil, Germany, North America, Japan, France, Canada, United States, United Kingdom
    Description

    Snapshot img

    Residential Real Estate Market Size 2025-2029

    The residential real estate market size is valued to increase USD 485.2 billion, at a CAGR of 4.5% from 2024 to 2029. Growing residential sector globally will drive the residential real estate market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 55% growth during the forecast period.
    By Mode Of Booking - Sales segment was valued at USD 926.50 billion in 2023
    By Type - Apartments and condominiums segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 41.01 billion
    Market Future Opportunities: USD 485.20 billion
    CAGR : 4.5%
    APAC: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving sector that continues to shape the global economy. With increasing marketing initiatives and the growing residential sector globally, the market presents significant opportunities for growth. However, regulatory uncertainty looms large, posing challenges for stakeholders. According to recent reports, technology adoption in residential real estate has surged, with virtual tours and digital listings becoming increasingly popular. In fact, over 40% of homebuyers in the US prefer virtual property viewings. Core technologies such as artificial intelligence and blockchain are revolutionizing the industry, offering enhanced customer experiences and streamlined processes.
    Despite these advancements, regulatory compliance remains a major concern, with varying regulations across regions adding complexity to market operations. The market is a complex and intriguing space, with ongoing activities and evolving patterns shaping its future trajectory.
    

    What will be the Size of the Residential Real Estate Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Residential Real Estate Market Segmented and what are the key trends of market segmentation?

    The residential real estate industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Mode Of Booking
    
      Sales
      Rental or lease
    
    
    Type
    
      Apartments and condominiums
      Landed houses and villas
    
    
    Location
    
      Urban
      Suburban
      Rural
    
    
    End-user
    
      Mid-range housing
      Affordable housing
      Luxury housing
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        Australia
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Mode Of Booking Insights

    The sales segment is estimated to witness significant growth during the forecast period.

    Request Free Sample

    The Sales segment was valued at USD 926.50 billion in 2019 and showed a gradual increase during the forecast period.

    Request Free Sample

    Regional Analysis

    APAC is estimated to contribute 55% to the growth of the global market during the forecast period.Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    See How Residential Real Estate Market Demand is Rising in APAC Request Free Sample

    The market in the Asia Pacific (APAC) region holds a significant share and is projected to lead the global market growth. Factors fueling this expansion include the region's rapid urbanization and increasing consumer spending power. Notably, residential and commercial projects in countries like India and China are experiencing robust development. The residential real estate sector in China plays a pivotal role in the economy and serves as a major growth driver for the market.

    With these trends continuing, the APAC the market is poised for continued expansion during the forecast period.

    Market Dynamics

    Our researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    In the Residential Real Estate Market, understanding the impact property tax rates home values and effect interest rates mortgage affordability is essential for buyers and investors. Key factors affecting home price appreciation and factors influencing housing affordability shape market trends, while the importance property due diligence process and requirements environmental site assessment ensure informed decisions. Investors benefit from methods calculating rental property roi, process home equity loan application, and benefits real estate portfolio diversification. Tools like property management software efficiency and techniques effective property marketing help tackle challenges managing rental properties. Additionally, strategies successf

  10. T

    United Kingdom House Price Index

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom House Price Index [Dataset]. https://tradingeconomics.com/united-kingdom/housing-index
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Oct 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1983 - Oct 31, 2025
    Area covered
    United Kingdom
    Description

    Housing Index in the United Kingdom increased to 517.10 points in October from 514.20 points in September of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. Average house price in Canada 2018-2024, with a forecast by 2026

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price in Canada 2018-2024, with a forecast by 2026 [Dataset]. https://www.statista.com/statistics/604228/median-house-prices-canada/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    The average Canadian house price declined slightly in 2023, after four years of consecutive growth. The average house price stood at ******* Canadian dollars in 2023 and was forecast to reach ******* Canadian dollars by 2026. Home sales on the rise The number of housing units sold is also set to increase over the two-year period. From ******* units sold, the annual number of home sales in the country is expected to rise to ******* in 2025. British Columbia and Ontario have traditionally been housing markets with prices above the Canadian average, and both are set to witness an increase in sales in 2025. How did Canadians feel about the future development of house prices? When it comes to consumer confidence in the performance of the real estate market in the next six months, Canadian consumers in 2024 mostly expected that the market would go up. A slightly lower share of the respondents believed real estate prices would remain the same.

  12. T

    United States Nahb Housing Market Index

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Nahb Housing Market Index [Dataset]. https://tradingeconomics.com/united-states/nahb-housing-market-index
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1985 - Nov 30, 2025
    Area covered
    United States
    Description

    Nahb Housing Market Index in the United States increased to 38 points in November from 37 points in October of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  13. Residential real estate price forecast change in Finland 2021-2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Residential real estate price forecast change in Finland 2021-2024 [Dataset]. https://www.statista.com/statistics/1174917/residential-real-estate-price-forecast-change-in-finland/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Finland
    Description

    Finland's house prices grew by about **** percent in 2021, but according to the forecast the growth is expected to slow down in the following years. In 2023, the average house price is forecast to decrease by **** percent and in 2024, the trend is to reverse, with an annual growth of ***** percent. The average square meter price of apartments in Finland's largest cities ranged between ***** euros and ***** euros in 2022.

  14. Housing Price Prediction using DT and RF in R

    • kaggle.com
    zip
    Updated Aug 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vikram amin (2023). Housing Price Prediction using DT and RF in R [Dataset]. https://www.kaggle.com/datasets/vikramamin/housing-price-prediction-using-dt-and-rf-in-r
    Explore at:
    zip(629100 bytes)Available download formats
    Dataset updated
    Aug 31, 2023
    Authors
    vikram amin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    • Objective: To predict the prices of houses in the City of Melbourne
    • Approach: Using Decision Tree and Random Forest https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Ffc6fb7d0bd8e854daf7a6f033937a397%2FPicture1.png?generation=1693489996707941&alt=media" alt="">
    • Data Cleaning:
    • Date column is shown as a character vector which is converted into a date vector using the library ā€˜lubridate’
    • We create a new column called age to understand the age of the house as it can be a factor in the pricing of the house. We extract the year from column ā€˜Date’ and subtract it from the column ā€˜Year Built’
    • We remove 11566 records which have missing values
    • We drop columns which are not significant such as ā€˜X’, ā€˜suburb’, ā€˜address’, (we have kept zipcode as it serves the purpose in place of suburb and address), ā€˜type’, ā€˜method’, ā€˜SellerG’, ā€˜date’, ā€˜Car’, ā€˜year built’, ā€˜Council Area’, ā€˜Region Name’
    • We split the data into ā€˜train’ and ā€˜test’ in 80/20 ratio using the sample function
    • Run libraries ā€˜rpart’, ā€˜rpart.plot’, ā€˜rattle’, ā€˜RcolorBrewer’
    • Run decision tree using the rpart function. ā€˜Price’ is the dependent variable https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F6065322d19b1376c4a341a4f22933a51%2FPicture2.png?generation=1693490067579017&alt=media" alt="">
    • Average price for 5464 houses is $1084349
    • Where building area is less than 200.5, the average price for 4582 houses is $931445. Where building area is less than 200.5 & age of the building is less than 67.5 years, the avg price for 3385 houses is $799299.6.
    • $4801538 is the Highest average prices of 13 houses where distance is lower than 5.35 & building are is >280.5
      https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F136542b7afb6f03c1890bae9b07dc464%2FDecision%20Tree%20Plot.jpeg?generation=1693490124083168&alt=media" alt="">
    • We use the caret package for tuning the parameter and the optimal complexity parameter found is 0.01 with RMSE 445197.9 https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Feb1633df9dd61ba3a51574873b055fd0%2FPicture3.png?generation=1693490163033658&alt=media" alt="">
    • We use library (Metrics) to find out the RMSE ($392107), MAPE (0.297) which means an accuracy of 99.70% and MAE ($272015.4)
    • Variables ā€˜postcode’, longitude and building are the most important variables
    • Test$Price indicates the actual price and test$predicted indicates the predicted price for particular 6 houses. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F620b1aad968c9aee169d0e7371bf3818%2FPicture4.png?generation=1693490211728176&alt=media" alt="">
    • We use the default parameters of random forest on the train data https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fe9a3c3f8776ee055e4a1bb92d782e19c%2FPicture5.png?generation=1693490244695668&alt=media" alt="">
    • The below image indicates that ā€˜Building Area’, ā€˜Age of the house’ and ā€˜Distance’ are the most important variables that affect the price of the house. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc14d6266184db8f30290c528d72b9f6b%2FRandom%20Forest%20Variables%20Importance.jpeg?generation=1693490284920037&alt=media" alt="">
    • Based on the default parameters, RMSE is $250426.2, MAPE is 0.147 (accuracy is 99.853%) and MAE is $151657.7
    • Error starts to remain constant between 100 to 200 trees and thereafter there is almost minimal reduction. We can choose N tree=200. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F365f9e8587d3a65805330889d22f9e60%2FNtree%20Plot.jpeg?generation=1693490308734539&alt=media" alt="">
    • We tune the model and find mtry = 3 has the lowest out of bag error
    • We use the caret package and use 5 fold cross validation technique
    • RMSE is $252216.10 , MAPE is 0.146 (accuracy is 99.854%) , MAE is $151669.4
    • We can conclude that Random Forest give us more accurate results as compared to Decision Tree
    • In Random Forest , the default parameters (N tree = 500) give us lower RMSE and MAPE as compared to N tree = 200. So we can proceed with those parameters.
  15. E

    United States Real Estate Market Growth Analysis - Forecast Trends and...

    • expertmarketresearch.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claight Corporation (Expert Market Research), United States Real Estate Market Growth Analysis - Forecast Trends and Outlook (2025-2034) [Dataset]. https://www.expertmarketresearch.com/reports/united-states-real-estate-market
    Explore at:
    pdf, excel, csv, pptAvailable download formats
    Dataset authored and provided by
    Claight Corporation (Expert Market Research)
    License

    https://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy

    Time period covered
    2025 - 2034
    Area covered
    United States
    Variables measured
    CAGR, Forecast Market Value, Historical Market Value
    Measurement technique
    Secondary market research, data modeling, expert interviews
    Dataset funded by
    Claight Corporation (Expert Market Research)
    Description

    The United States real estate market was valued at USD 3.43 Trillion in 2024. The industry is expected to grow at a CAGR of 2.80% during the forecast period of 2025-2034 to reach a value of USD 4.52 Trillion by 2034. The market growth is mainly driven by the rising corporate investment, particularly in addressing the nation’s affordable housing shortage.

    Major corporations are actively investing to integrate housing stability with social responsibility, supporting both new construction and the preservation of existing homes. In September 2024, UnitedHealth Group surpassed USD 1 billion in investments for affordable and mixed-income housing through direct capital and tax credits. These projects span 31 states and have delivered over 25,000 homes, simultaneously improved community health and providing secure housing for low- and moderate-income households.

    Such corporate involvements are reshaping trends in United States real estate market by expanding the supply of affordable housing, reducing barriers for renters and homeowners, and stimulating development in high-demand urban and suburban areas. By aligning financial resources with strategic planning, corporations are enabling scalable solutions that meet social and economic objectives while enhancing overall market efficiency.

  16. Residential real estate price forecast change in Denmark 2021-2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Residential real estate price forecast change in Denmark 2021-2024 [Dataset]. https://www.statista.com/statistics/1165931/residential-real-estate-price-forecast-change-in-denmark/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Denmark
    Description

    The average house price in Denmark increased sharply in 2021, but growth slowed down to approximately *** percent in 2022. According to the forecast, 2023 is going to see house prices fall by almost **** percent. In 2024, house prices are expected to decrease further by about *** percent. As of 2021, the average sales price of single family homes in Denmark amounted to over *** Danish kroner.

  17. T

    Croatia House Price Index

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Croatia House Price Index [Dataset]. https://tradingeconomics.com/croatia/housing-index
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2005 - Jun 30, 2025
    Area covered
    Croatia
    Description

    Housing Index in Croatia increased to 223.65 points in the second quarter of 2025 from 214.18 points in the first quarter of 2025. This dataset provides - Croatia Housing Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  18. T

    Netherlands Existing House Price Index

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Netherlands Existing House Price Index [Dataset]. https://tradingeconomics.com/netherlands/housing-index
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1995 - Oct 31, 2025
    Area covered
    Netherlands
    Description

    Housing Index in Netherlands increased to 152.30 points in October from 151.60 points in September of 2025. This dataset provides - Netherlands House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  19. Real-Estate And Housing Price Prediction

    • kaggle.com
    zip
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah Meo (2025). Real-Estate And Housing Price Prediction [Dataset]. https://www.kaggle.com/datasets/abdullahmeo/housing-price-prediction
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Nov 25, 2025
    Authors
    Abdullah Meo
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Discover a high-quality, analytics-ready dataset engineered for precision, performance, and real-world insight. The Housing Price Prediction Dataset provides a comprehensive foundation for building accurate machine learning models, exploring market trends, and understanding the key factors that influence residential property values.

    It include different categories of housing: furnishing ,semi-Furnishing and also about Unfurnishing. Housing price and its rate of sale is also discussed.(PropertyID,Location,Bedrooms,Bathrooms,BuiltUpArea,SalePrice,YearBuilt) are some of its features. It covers various property types: Apartments, Villas, Independent Houses, Studio Flats and suitable for: Price prediction, clustering, recommendation systems, and more....

  20. Mexico Residential Real Estate Market Size | Industry Analysis & Forecast...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Mexico Residential Real Estate Market Size | Industry Analysis & Forecast Report [Dataset]. https://www.mordorintelligence.com/industry-reports/residential-real-estate-market-in-mexico
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 28, 2025
    Dataset provided by
    Authors
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Mexico
    Description

    The Mexico Residential Real Estate Market Report is Segmented by Business Model (Sales, Rental), by Property Type (Apartments & Condominiums, Villas & Landed Houses), by Price Band (Affordable, Mid-Market, Luxury), by Mode of Sale (Primary New-Build, Secondary Existing-Home Resale), and by States (Mexico City CDMX, Nuevo León, Jalisco, Querétaro, Rest of Mexico). The Market Forecasts are Provided in Terms of Value USD.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
Organization logo

Housing Prices Dataset

Housing Prices Prediction - Regression Problem

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
zip(4740 bytes)Available download formats
Dataset updated
Jan 12, 2022
Authors
M Yasser H
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

Description:

A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

Acknowledgement:

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Objective:

  • Understand the Dataset & cleanup (if required).
  • Build Regression models to predict the sales w.r.t a single & multiple feature.
  • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
Search
Clear search
Close search
Google apps
Main menu