Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A housing market prediction that many experts agree on is that it will be a seller’s market. Home prices are expected to rise for some time due to increased demand and limited supply. Millennials are at the age to start investing in the real estate market for the first time. Hence, the demand for residential and commercial projects is rising with every passing day. The future of real estate will witness a rise in demand and limited supply, resulting in it being a seller’s market.
Your 1 upvote encourages me to upload more trending datasets. Thanks for your support.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F8355503%2F20827a3fb7a1b4bc6e3227006563692f%2FCapture.PNG?generation=1696752722617297&alt=media" alt="">
If you liked the dataset, please upvote to upload more trending datasets. Thanks for your support.
Facebook
TwitterThe average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.
Facebook
TwitterDescription: This dataset provides historical housing prices scraped from Centaline Property Hong Kong, one of the largest real estate agencies in Hong Kong. The dataset includes information on the date of the transaction, the property address, floor plan, saleable area, unit rate, source, and district. The dataset covers a period of time spanning several years, allowing for analysis of trends and changes in the Hong Kong housing market.
Columns: Date: the date of the property transaction Address: the address of the property Floor Plan: -- Price: the price of the property Changes: any changes made to the property since the last transaction Saleable Area: the area of the property that can be sold to a buyer Unit Rate: the price per square foot of saleable area Source: the source of the data (Centaline Property Hong Kong/ Land Registry) District: the district in which the property is located in Hong Kong
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterRedfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)
The dataset has the following columns:
- period_begin
- period_end
- period_duration
- region_type
- region_type_id
- table_id
- is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False)
- region
- city
- state
- state_code
- property_type
- property_type_id
- median_sale_price
- median_sale_price_mom (median sale price changes month over month)
- median_sale_price_yoy (median sale price changes year over year)
- median_list_price
- median_list_price_mom (median list price changes month over month)
- median_list_price_yoy (median list price changes year over year)
- median_ppsf (median sale price per square foot)
- median_ppsf_mom (median sale price per square foot changes month over month)
- median_ppsf_yoy (median sale price per square foot changes year over year)
- median_list_ppsf (median list price per square foot)
- median_list_ppsf_mom (median list price per square foot changes month over month)
- median_list_ppsf_yoy. (median list price per square foot changes year over year)
- homes_sold (number of homes sold)
- homes_sold_mom (number of homes sold month over month)
- homes_sold_yoy (number of homes sold year over year)
- pending_sales
- pending_sales_mom
- pending_sales_yoy
- new_listings
- new_listings_mom
- new_listings_yoy
- inventory
- inventory_mom
- inventory_yoy
- months_of_supply
- months_of_supply_mom
- months_of_supply_yoy
- median_dom (median days on market until property is sold)
- median_dom_mom (median days on market changes month over month)
- median_dom_yoy (median days on market changes year over year)
- avg_sale_to_list (average sale price to list price ratio)
- avg_sale_to_list_mom (average sale price to list price ratio changes month over month)
- avg_sale_to_list_yoy (average sale price to list price ratio changes year over year)
- sold_above_list
- sold_above_list_mom
- sold_above_list_yoy
- price_drops
- price_drops_mom
- price_drops_yoy
- off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks)
- off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month)
- off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year)
- parent_metro_region
- parent_metro_region_metro_code
- last_updated
Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html
Data Source & Credit: Redfin.com
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United States decreased to 435.40 points in September from 435.60 points in August of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Sweden increased to 959 points in the third quarter of 2025 from 945 points in the second quarter of 2025. This dataset provides - Sweden House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Real Residential Property Prices for Canada (QCAR628BIS) from Q1 1970 to Q2 2025 about Canada, residential, HPI, housing, real, price index, indexes, and price.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index MoM in the United States decreased to 0 percent in September from 0.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index MoM.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.
The dataset is designed to capture essential attributes for predicting house prices, including:
Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.
Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.
3. Correlation Between Features
A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.
The dataset is well-suited for various machine learning and data analysis applications, including:
House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.
Facebook
TwitterHouse prices in the Houston-The Woodlands-Sugar Land metropolitan area have almost doubled since 2011. In 2023, the median house price reached ******* U.S. dollars, down by *** percent from 2022. This was close to the average house price in Texas.
Facebook
TwitterNew housing price index (NHPI). Monthly data are available from January 1981. The table presents data for the most recent reference period and the last four periods. The base period for the index is (201612=100).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Los Angeles County, CA (ATNHPIUS06037A) from 1975 to 2024 about Los Angeles County, CA; Los Angeles; CA; HPI; housing; price index; indexes; price; and USA.
Facebook
TwitterHouse prices in the Netherlands had been on an upward trend for nearly nine years, before starting to decline for most of 2023. In December 2023, the average house price rose by *** percent from the same period the year before. In comparison, in December 2022, house prices soared by *** percent because of the low mortgage rates, a recovering economy and a high level of consumer confidence at the time. According to a forecast released in October 2023, real estate prices were expected to decline in 2024.
Facebook
TwitterPurpose and brief description The house price index measures the inflation in the residential property market. The house price index reflects price developments for all residential properties purchased by households (apartments, terraced houses, detached houses), regardless of whether they are new or existing. Only market prices are taken into account, so self-build homes are excluded. The price of the land is included in the price of the properties. Population Real estate transactions involving residential properties Periodicity Quarterly. Release calendar Results available 3 months after the reference period Definitions House price index: The house price index measures changes in the prices of new or existing dwellings, regardless of their use or previous owner. Inflation - house price index: Inflation is defined as the ratio between the value of a given quarter and that of the same quarter of the previous year. Weighting - house price index: Weighting based on the national accounts (gross fixed capital formation in housing) and the total number of real estate transactions involving residential properties. Type of dwelling according to the classification set out in Regulation (EU) No 93/2013 on housing price indices. Technical information The house price index measures the price evolution of real estate prices on the market of private property. The index follows price changes of new or existing residential real estate purchased by households, irrespective of their purpose (letting or owner-occupying). Only market prices are taken into account. Houses built by their owners are therefore not included. The price of the building plot is included in the house price. The house price index is based on real estate transaction data from the General Administration of the Patrimonial Documentation of the FPS Finances. The prices used are those included in the deeds of sale. Given the time between the date on which the preliminary sales agreement is signed and the date on which the deed is executed (between three and four months), this index measures the price evolution with a delay compared to the actual date on which the sales price is set. This delay is inherent to the data source. The house price index is calculated by the European Union Member States, Norway and Iceland. Eurostat calculates the index for the Euro area (as well as for the European Union as a whole) using the harmonised indices of the Member States. Given the role of the housing market in the economic and financial crisis of 2008, the house price index was included in the indicators used in the procedure to prevent and correct macroeconomic imbalances in the European Union. The house price index is calculated under the European Regulation 2016/792 on harmonised indices of consumer prices and the house price index and 2023/1470 laying down the methodological and technical specifications as regards the house price index and the owner-occupied housing price index. Data are available from 2005 onward for Belgium as well as for the European Union and the majority of European countries. The house price index can be broken down by new houses and existing houses. The weights of these two items in the overall index are determined by the gross fixed capital formation in houses (for the new houses) and the total value of transactions of the previous year (for the existing houses). Until 2013, the house price index of new houses was roughly estimated based on the output price index in the construction sector. Since 2014, it is also based on real estate transaction data. House price index for existing houses is available per region since 2010. The data have therefore been completely reviewed when the results for the fourth quarter of 2023 were published in March 2024. Since the houses that are put up for sale differ from one quarter to another, the changes in characteristics are processed with hedonic regression models to eliminate price fluctuations due to changes in characteristics of the properties sold. These models aim to estimate the theoretical price based on the characteristics and location of the houses sold. The index is then calculated based on changes in the average prices observed and adjusted by a factor depending on the differences in quality observed between dwellings sold during the different periods.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A housing market prediction that many experts agree on is that it will be a seller’s market. Home prices are expected to rise for some time due to increased demand and limited supply. Millennials are at the age to start investing in the real estate market for the first time. Hence, the demand for residential and commercial projects is rising with every passing day. The future of real estate will witness a rise in demand and limited supply, resulting in it being a seller’s market.
Your 1 upvote encourages me to upload more trending datasets. Thanks for your support.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F8355503%2F20827a3fb7a1b4bc6e3227006563692f%2FCapture.PNG?generation=1696752722617297&alt=media" alt="">
If you liked the dataset, please upvote to upload more trending datasets. Thanks for your support.