Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
The house price to income ratio in the United States has reached concerning levels, with the index hitting ***** in the fourth quarter of 2024. This indicates that house prices have outpaced income growth by over ** percent since 2015, highlighting a growing affordability crisis in the housing market. The widening gap between home prices and wages is putting homeownership out of reach for many Americans, particularly as real wages have remained stagnant. Rising home prices and stagnant wages While average annual real wages in the United States have increased slightly since 2014, home prices have soared. The median sales price of existing single-family homes reached a record-high in 2024, representing a substantial increase over the past five years. This disparity between wage growth and home price appreciation has led to a significant decrease in housing affordability across the country. Affordability challenges in the U.S. housing market The U.S. Housing Affordability Index, which measures whether a family earning the median income can afford a median-priced home, plummeted in 2024, marking the second-worst year for homebuyers since records began. This decline in affordability is reflected in homebuyer sentiment, with homebuyer sentiment plummeting.
Portugal, the Netherlands and Austria are among the countries where house prices grew the most in comparison to income since 2015. In the fourth quarter of 2024, the house price to income ratio in the Netherlands and Austria exceeded *** index points, indicating that since 2015, house price growth has outpaced income growth by ** percent. In Portugal, the index amounted to *** index points in the same period. This was not the case in all countries in the ranking: In Finland, Bulgaria, and Romania, the opposite trend was observed, showing that incomes grew faster than house prices. The house price to income ratio is calculated as the nominal house prices divided by nominal income per capita, with 2015 chosen as the base year of the index. The ratio signifies the development of housing affordability, with higher figures meaning housing is more unaffordable. There are other indices, such as RHPI (or house price indices corrected by inflation rates) which look at this as well.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Hungary increased 9% of House Price to Income Ratio in 2019, from a year earlier.
The house price to income index in Europe declined in almost all European countries in 2023, indicating that income grew faster than house prices. Portugal, Luxembourg, and the Netherlands led the house price to income index ranking in 2023, with values exceeding *** index points. Romania, Bulgaria, and Finland were on the other side of the spectrum, with less than 100 index points. The house price to income ratio is an indicator for the development of housing affordability across OECD countries and is calculated as the nominal house prices divided by nominal disposable income per head, with 2015 chosen as a base year. A ratio higher than 100 means that the nominal house price growth since 2015 has outpaced the nominal disposable income growth, and housing is therefore comparatively less affordable. In 2023, the OECD average stood at ***** index points.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Taiwan Housing Price to Income Ratio data was reported at 9.160 Times in Dec 2017. This records a decrease from the previous number of 9.220 Times for Sep 2017. Taiwan Housing Price to Income Ratio data is updated quarterly, averaging 6.735 Times from Mar 2002 (Median) to Dec 2017, with 64 observations. The data reached an all-time high of 9.460 Times in Jun 2017 and a record low of 4.150 Times in Sep 2002. Taiwan Housing Price to Income Ratio data remains active status in CEIC and is reported by Construction and Planning Agency, Ministry of the Interior. The data is categorized under Global Database’s Taiwan – Table TW.EB017: Housing Price and Housing Loan Payment to Income Ratio.
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Price to Income Ratio: sa data was reported at 130.892 2015=100 in 2024. This records an increase from the previous number of 129.315 2015=100 for 2023. United States US: Price to Income Ratio: sa data is updated yearly, averaging 113.539 2015=100 from Dec 1970 (Median) to 2024, with 55 observations. The data reached an all-time high of 132.929 2015=100 in 1979 and a record low of 90.287 2015=100 in 2012. United States US: Price to Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s United States – Table US.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan JP: Standardised Price-Income Ratio: sa data was reported at 87.536 Ratio in 2024. This records a decrease from the previous number of 89.289 Ratio for 2023. Japan JP: Standardised Price-Income Ratio: sa data is updated yearly, averaging 113.262 Ratio from Dec 1960 (Median) to 2024, with 65 observations. The data reached an all-time high of 163.202 Ratio in 1973 and a record low of 73.471 Ratio in 2009. Japan JP: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Japan – Table JP.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘California Housing Prices Data (5 new features!)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/fedesoriano/california-housing-prices-data-extra-features on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Boston House Prices: LINK
This is the dataset is a modified version of the California Housing Data used in the paper Pace, R. Kelley, and Ronald Barry. "Sparse spatial autoregressions." Statistics & Probability Letters 33.3 (1997): 291-297.
. It serves as an excellent introduction to implementing machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable list of variables and sits at an optimal size between being too toyish and too cumbersome.
The data contains information from the 1990 California census. So although it may not help you with predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible introductory dataset for teaching people about the basics of machine learning.
This dataset includes 5 extra features defined by me: "Distance to coast", "Distance to Los Angeles", "Distance to San Diego", "Distance to San Jose", and "Distance to San Francisco". These extra features try to account for the distance to the nearest coast and the distance to the centre of the largest cities in California.
The distances were calculated using the Haversine formula with the Longitude and Latitude:
https://wikimedia.org/api/rest_v1/media/math/render/svg/a65dbbde43ff45bacd2505fcf32b44fc7dcd8cc0" alt="">
where:
phi_1
and phi_2
are the Latitudes of point 1 and point 2, respectivelylambda_1
and lambda_2
are the Longitudes of point 1 and point 2, respectivelyr
is the radius of the Earth (6371km)The data pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data. The columns are as follows, their names are pretty self-explanatory:
1) Median House Value: Median house value for households within a block (measured in US Dollars) [$] 2) Median Income: Median income for households within a block of houses (measured in tens of thousands of US Dollars) [10k$] 3) Median Age: Median age of a house within a block; a lower number is a newer building [years] 4) Total Rooms: Total number of rooms within a block 5) Total Bedrooms: Total number of bedrooms within a block 6) Population: Total number of people residing within a block 7) Households: Total number of households, a group of people residing within a home unit, for a block 8) Latitude: A measure of how far north a house is; a higher value is farther north [°] 9) Longitude: A measure of how far west a house is; a higher value is farther west [°] 10) Distance to coast: Distance to the nearest coast point [m] 11) Distance to Los Angeles: Distance to the centre of Los Angeles [m] 12) Distance to San Diego: Distance to the centre of San Diego [m] 13) Distance to San Jose: Distance to the centre of San Jose [m] 14) Distance to San Francisco: Distance to the centre of San Francisco [m]
This data was entirely modified and cleaned by me. The original data (without the distance features) was initially featured in the following paper: Pace, R. Kelley, and Ronald Barry. "Sparse spatial autoregressions." Statistics & Probability Letters 33.3 (1997): 291-297.
The original dataset can be found under the following link: https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
--- Original source retains full ownership of the source dataset ---
The house price to income ratio in Sweden in the first quarter of 2024 has declined notably since its peak in 2022. The house price to income ratio is calculated by dividing nominal house prices by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. Sweden's index score in the first quarter of 2024 amounted to 96.5, which means that income growth has outpaced house price growth by 3.5 percent since 2015. This was lower than the average house price to income reatio in the Euro area 16.
There is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**
Title: Location Affordability Index - NMCDC Copy
Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.
Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.
Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC
Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.
Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb
UID: 73
Data Requested: Family income spent on basic need
Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id
Date Acquired: Map copied on May 10, 2022
Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6
Tags: PENDING
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
Column Name | Description |
---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual workplace-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Standardised Price-Income Ratio: sa data was reported at 149.268 Ratio in Dec 2024. This records a decrease from the previous number of 152.371 Ratio for Sep 2024. Australia Standardised Price-Income Ratio: sa data is updated quarterly, averaging 82.643 Ratio from Mar 1970 (Median) to Dec 2024, with 220 observations. The data reached an all-time high of 153.422 Ratio in Jun 2024 and a record low of 62.554 Ratio in Sep 1983. Australia Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Australia – Table AU.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Quarterly. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Standardised Price-Income Ratio: sa data was reported at 88.538 Ratio in 2024. This records a decrease from the previous number of 93.578 Ratio for 2023. Germany DE: Standardised Price-Income Ratio: sa data is updated yearly, averaging 95.901 Ratio from Dec 1980 (Median) to 2024, with 45 observations. The data reached an all-time high of 146.141 Ratio in 1981 and a record low of 76.343 Ratio in 2010. Germany DE: Standardised Price-Income Ratio: sa data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Germany – Table DE.OECD.AHPI: House Price Index: Seasonally Adjusted: OECD Member: Annual. Nominal house prices divided by nominal disposable income per head. Net household disposable income is used. The population data come from the OECD national accounts database. The long-term average is calculated over the whole period available when the indicator begins after 1980 or after 1980 if the indicator is longer. This value is used as a reference value. The ratio is calculated by dividing the indicator source on this long-term average, and indexed to a reference value equal to 100.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.
The Housing Affordability Index, calculated by the Runstad Center for Real Estate Studies, measures the ability of a middle-income family to carry the mortgage payments on a median-price home. When the index is 100 there is a balance between the family’s ability to pay and the cost. Higher indexes indicate housing is more affordable.
For example, an index of 126 means that a median-income family has 26 percent more income than the bare minimum required to qualify for a mortgage on a median-price home. An index of 80 means that a median-income family has less income than the minimum required.
Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.